3 resultados para Distributed computer systems
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge in a storage system that supports fine grained configuration on a variety of parameters. This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter can effect the performance for a range of access patterns when tested with an OpenStack cloud system.
Resumo:
This research investigates some of the reasons for the reported difficulties experienced by writers when using editing software designed for structured documents. The overall objective was to determine if there are aspects of the software interfaces which militate against optimal document construction by writers who are not computer experts, and to suggest possible remedies. Studies were undertaken to explore the nature and extent of the difficulties, and to identify which components of the software interfaces are involved. A model of a revised user interface was tested, and some possible adaptations to the interface are proposed which may help overcome the difficulties. The methodology comprised: 1. identification and description of the nature of a ‘structured document’ and what distinguishes it from other types of document used on computers; 2. isolation of the requirements of users of such documents, and the construction a set of personas which describe them; 3. evaluation of other work on the interaction between humans and computers, specifically in software for creating and editing structured documents; 4. estimation of the levels of adoption of the available software for editing structured documents and the reactions of existing users to it, with specific reference to difficulties encountered in using it; 5. examination of the software and identification of any mismatches between the expectations of users and the facilities provided by the software; 6. assessment of any physical or psychological factors in the reported difficulties experienced, and to determine what (if any) changes to the software might affect these. The conclusions are that seven of the twelve modifications tested could contribute to an improvement in usability, effectiveness, and efficiency when writing structured text (new document selection; adding new sections and new lists; identifying key information typographically; the creation of cross-references and bibliographic references; and the inclusion of parts of other documents). The remaining five were seen as more applicable to editing existing material than authoring new text (adding new elements; splitting and joining elements [before and after]; and moving block text).
Resumo:
A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.