3 resultados para Diferenciação neuronal

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntington’s Disease (HD) is a rare autosomal dominant neurodegenerative disease caused by the expression of a mutant Huntingtin (muHTT) protein. Therefore, preventing the expression of muHTT by harnessing the specificity of the RNA interference (RNAi) pathway is a key research avenue for developing novel therapies for HD. However, the biggest caveat in the RNAi approach is the delivery of short interfering RNA (siRNAs) to neurons, which are notoriously difficult to transfect. Indeed, despite the great advances in the field of nanotechnology, there remains a great need to develop more effective and less toxic carriers for siRNA delivery to the Central Nervous System (CNS). Thus, the aim of this thesis was to investigate the utility of modified amphiphilic β-cyclodextrins (CDs), oligosaccharide-based molecules, as non-viral vectors for siRNA delivery for HD. Modified CDs were able to bind and complex siRNAs forming nanoparticles capable of delivering siRNAs to ST14A-HTT120Q cells and to human HD fibroblasts, and reducing the expression of the HTT gene in these in vitro models of HD. Moreover, direct administration of CD.siRNA nanoparticles into the R6/2 mouse brain resulted in significant HTT gene expression knockdown and selective alleviation of rotarod motor deficits in this mouse model of HD. In contrast to widely used transfection reagents, CD.siRNA nanoparticles only induced limited cytotoxic and neuroinflammatory responses in multiple brain-derived cell-lines, and also in vivo after single direct injections into the mouse brain. Alternatively, we have also described a PEGylation-based formulation approach to further stabilise CD.siRNA nanoparticles and progress towards a systemic delivery nanosystem. Resulting PEGylated CD.siRNA nanoparticles showed increased stability in physiological saltconditions and, to some extent, reduced protein-induced aggregation. Taken together, the work outlined in this thesis identifies modified CDs as effective, safe and versatile siRNA delivery systems that hold great potential for the treatment of CNS disorders, such as HD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfusion experiments on an isolated, canine lateral saphenous vein segment preparation have shown that noradrenaline causes potent, flow dependent effects, at a threshold concentration comparable to that of plasma noradrenaline, when it stimulates the segment by diffusion from its microcirculation (vasa vasorum). The effects caused are opposite to those neuronal noradrenaline causes in vivo and that, in the light of the principle that all information is transmitted in patterns that need contrast to be detected – star patterns need darkness, sound patterns, quietness – has generated the hypothesis that plasma noradrenaline provides the obligatory contrast tissues need to detect and respond to the regulatory information encrypted in the diffusion pattern of neuronal noradrenaline. Based on the implications of that hypothesis, the controlled variable of the peripheral noradrenergic system is believed to be the maintenance of a set point balance between the contrasting effects of plasma and neuronal noradrenaline on a tissue. The hypothalamic sympathetic centres are believed to monitor that balance through the level of afferent sympathetic traffic they receive from a tissue and to correct any deviation it detects in the balance by adjusting the level of efferent sympathetic input it projects to the tissue. The failure of the centres to maintain the correct balance, for reasons intrinsic or extrinsic to themselves, is believed to be responsible for degenerative and genetic disorders. When the failure causes the balance to be polarised in favour of the effect of plasma noradrenaline that is believed to cause inflammatory diseases like dilator cardiac failure, renal hypertension, varicose veins and aneurysms; when it causes it to be polarised in favour of the effect of neuronal noradrenaline that is believed to cause genetic diseases like hypertrophic cardiopathy, pulmonary hypertension and stenoses and when, in pregnancy, a factor causes the polarity to favour plasma noradrenaline in all the maternal tissues except the uterus and conceptus, where it favours neuronal noradrenaline, that is believed to cause preeclampsia.