2 resultados para Dielectric films

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomic layer deposition (ALD) of highly conformal, silicon-based dielectric thin films has become necessary because of the continuing decrease in feature size in microelectronic devices. The ALD of oxides and nitrides is usually thought to be mechanistically similar, but plasma-enhanced ALD of silicon nitride is found to be problematic, while that of silicon oxide is straightforward. To find why, the ALD of silicon nitride and silicon oxide dielectric films was studied by applying ab initio methods to theoretical models for proposed surface reaction mechanisms. The thermodynamic energies for the elimination of functional groups from different silicon precursors reacting with simple model molecules were calculated using density functional theory (DFT), explaining the lower reactivity of precursors toward the deposition of silicon nitride relative to silicon oxide seen in experiments, but not explaining the trends between precursors. Using more realistic cluster models of amine and hydroxyl covered surfaces, the structures and energies were calculated of reaction pathways for chemisorption of different silicon precursors via functional group elimination, with more success. DFT calculations identified the initial physisorption step as crucial toward deposition and this step was thus used to predict the ALD reactivity of a range of amino-silane precursors, yielding good agreement with experiment. The retention of hydrogen within silicon nitride films but not in silicon oxide observed in FTIR spectra was accounted for by the theoretical calculations and helped verify the application of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing magnetic multilayers are essential for reducing the core eddy current losses in the integrated power magnetic components (inductors/transformers). PVD based processes are typically used to achieve the multilayers with thin dielectric spacers. However, those processes are costly, and can be difficult to integrate. It is evident that cost effective alternative is needed. In recent years, electrochemical processes have been investigated to address these issues. One such method would be to successive metallization of insulating photoresists acting as spacer layer (such as SU-8) with soft magnetic films (such as Ni-Fe-Co alloys). This paper describes an experimental procedure to fabricate magnetic multilayers with a thin variant of SU-8 2 (< 1.5 µm) as inter-layers for integrated micro-inductors/transformers for power conversion applications.