2 resultados para Diastolic stiffness
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Sudden changes in the stiffness of a structure are often indicators of structural damage. Detection of such sudden stiffness change from the vibrations of structures is important for Structural Health Monitoring (SHM) and damage detection. Non-contact measurement of these vibrations is a quick and efficient way for successful detection of sudden stiffness change of a structure. In this paper, we demonstrate the capability of Laser Doppler Vibrometry to detect sudden stiffness change in a Single Degree Of Freedom (SDOF) oscillator within a laboratory environment. The dynamic response of the SDOF system was measured using a Polytec RSV-150 Remote Sensing Vibrometer. This instrument employs Laser Doppler Vibrometry for measuring dynamic response. Additionally, the vibration response of the SDOF system was measured through a MicroStrain G-Link Wireless Accelerometer mounted on the SDOF system. The stiffness of the SDOF system was experimentally determined through calibrated linear springs. The sudden change of stiffness was simulated by introducing the failure of a spring at a certain instant in time during a given period of forced vibration. The forced vibration on the SDOF system was in the form of a white noise input. The sudden change in stiffness was successfully detected through the measurements using Laser Doppler Vibrometry. This detection from optically obtained data was compared with a detection using data obtained from the wireless accelerometer. The potential of this technique is deemed important for a wide range of applications. The method is observed to be particularly suitable for rapid damage detection and health monitoring of structures under a model-free condition or where information related to the structure is not sufficient.
Resumo:
This paper proposes a simple and compact compliant gripper, whose gripping stiffness can be thermally controlled to accommodate the actuation inaccuracy to avoid or reduce the risk of breaking objects. The principle of reducing jaw stiffness is that thermal change can cause an initial internal compressive force along each compliant beam. A prototype is fabricated with physical testing to verify the feasibility. It has been shown that when a voltage is applied, the gripping stiffness effectively reduces to accommodate more inaccuracy of actuation, which allows delicate or small-scale objects to be gripped.