2 resultados para Development of understanding
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis investigates the emerging InAlN high electron mobility transistor (HEMT) technology with respect to its application in the space industry. The manufacturing processes and device performance of InAlN HEMTs were compared to AlGaN HEMTs, also produced as part of this work. RF gain up to 4 GHz was demonstrated in both InAlN and AlGaN HEMTs with gate lengths of 1 μm, with InAlN HEMTs generally showing higher channel currents (~150 c.f. 60 mA/mm) but also degraded leakage properties (~ 1 x 10-4 c.f. < 1 x 10-8 A/mm) with respect to AlGaN. An analysis of device reliability was undertaken using thermal stability, radiation hardness and off-state breakdown measurements. Both InAlN and AlGaN HEMTs showed excellent stability under space-like conditions, with electrical operation maintained after exposure to 9.2 Mrad of gamma radiation at a dose rate of 6.6 krad/hour over two months and after storage at 250°C for four weeks. Furthermore a link was established between the optimisation of device performance (RF gain, power handling capabilities and leakage properties) and reliability (radiation hardness, thermal stability and breakdown properties), particularly with respect to surface passivation. Following analysis of performance and reliability data, the InAlN HEMT device fabrication process was optimised by adjusting the metal Ohmic contact formation process (specifically metal stack thicknesses and anneal conditions) and surface passivation techniques (plasma power during dielectric layer deposition), based on an existing AlGaN HEMT process. This resulted in both a reduction of the contact resistivity to around 1 x 10-4 Ω.cm2 and the suppression of degrading trap-related effects, bringing the measured gate-lag close to zero. These discoveries fostered a greater understanding of the physical mechanisms involved in device operation and manufacture, which is elaborated upon in the final chapter.
Resumo:
Background: Despite known benefits of regular physical activity for health and well-being, many studies suggest that levels of physical activity in young people are low, and decline dramatically during adolescence. The purpose of the current research was to gather data on adolescent youth in order to inform the development of a targeted physical activity intervention. Methods: Cross-sectional data on physical activity levels (using self report and accelerometry), psychological correlates of physical activity, anthropometic characteristics, and the fundamental movement skill proficiency of 256 youth (53% male, 12.40 ± 0.51 years) were collected. A subsample (n = 59) participated in focus group interviews to explore their perceptions of health and identify barriers and motivators to participation in physical activity. Results: Findings indicate that the majority of youth (67%) were not accumulating the minimum 60 minutes of physical activity recommended daily for health, and that 99.5% did not achieve the fundamental movement skill proficiency expected for their age. Body mass index data showed that 25% of youth were classified as overweight or obese. Self-efficacy and physical activity attitude scores were significantly different (p < 0.05) between low, moderate and high active participants. Active and inactive youth reported differences in their perceived understanding of health and their barriers to physical activity participation, with active youth relating nutrition, exercise, energy and sports with the definition of ‘being healthy’, and inactive youth attributing primarily nutritional concepts to ‘being healthy’. Conclusions: Data show a need for targeting low levels of physical activity in youth through addressing poor health related activity knowledge and low fundamental movement skill proficiency. The Y-PATH intervention was developed in accordance with the present study findings; details of the intervention format are presented.