4 resultados para Detection sensitivity
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The abundance of many commercially important fish stocks are declining and this has led to widespread concern on the performance of traditional approach in fisheries management. Quantitative models are used for obtaining estimates of population abundance and the management advice is based on annual harvest levels (TAC), where only a certain amount of catch is allowed from specific fish stocks. However, these models are data intensive and less useful when stocks have limited historical information. This study examined whether empirical stock indicators can be used to manage fisheries. The relationship between indicators and the underlying stock abundance is not direct and hence can be affected by disturbances that may account for both transient and persistent effects. Methods from Statistical Process Control (SPC) theory such as the Cumulative Sum (CUSUM) control charts are useful in classifying these effects and hence they can be used to trigger management response only when a significant impact occurs to the stock biomass. This thesis explores how empirical indicators along with CUSUM can be used for monitoring, assessment and management of fish stocks. I begin my thesis by exploring various age based catch indicators, to identify those which are potentially useful in tracking the state of fish stocks. The sensitivity and response of these indicators towards changes in Spawning Stock Biomass (SSB) showed that indicators based on age groups that are fully selected to the fishing gear or Large Fish Indicators (LFIs) are most useful and robust across the range of scenarios considered. The Decision-Interval (DI-CUSUM) and Self-Starting (SS-CUSUM) forms are the two types of control charts used in this study. In contrast to the DI-CUSUM, the SS-CUSUM can be initiated without specifying a target reference point (‘control mean’) to detect out-of-control (significant impact) situations. The sensitivity and specificity of SS-CUSUM showed that the performances are robust when LFIs are used. Once an out-of-control situation is detected, the next step is to determine how much shift has occurred in the underlying stock biomass. If an estimate of this shift is available, they can be used to update TAC by incorporation into Harvest Control Rules (HCRs). Various methods from Engineering Process Control (EPC) theory were tested to determine which method can measure the shift size in stock biomass with the highest accuracy. Results showed that methods based on Grubb’s harmonic rule gave reliable shift size estimates. The accuracy of these estimates can be improved by monitoring a combined indicator metric of stock-recruitment and LFI because this may account for impacts independent of fishing. The procedure of integrating both SPC and EPC is known as Statistical Process Adjustment (SPA). A HCR based on SPA was designed for DI-CUSUM and the scheme was successful in bringing out-of-control fish stocks back to its in-control state. The HCR was also tested using SS-CUSUM in the context of data poor fish stocks. Results showed that the scheme will be useful for sustaining the initial in-control state of the fish stock until more observations become available for quantitative assessments.
Resumo:
Background Delirium is highly prevalent, especially in older patients. It independently leads to adverse outcomes, but remains under-detected, particularly hypoactive forms. Although early identification and intervention is important, delirium prevention is key to improving outcomes. The delirium prodrome concept has been mooted for decades, but remains poorly characterised. Greater understanding of this prodrome would promote prompt identification of delirium-prone patients, and facilitate improved strategies for delirium prevention and management. Methods Medical inpatients of ≥70 years were screened for prevalent delirium using the Revised Delirium Rating Scale (DRS--‐R98). Those without prevalent delirium were assessed daily for delirium development, prodromal features and motor subtype. Survival analysis models identified which prodromal features predicted the emergence of incident delirium in the cohort in the first week of admission. The Delirium Motor Subtype Scale-4 was used to ascertain motor subtype. Results Of 555 patients approached, 191 patients were included in the prospective study. The median age was 80 (IQR 10) and 101 (52.9%) were male. Sixty-one patients developed incident delirium within a week of admission. Several prodromal features predicted delirium emergence in the cohort. Firstly, using a novel Prodromal Checklist based on the existing literature, and controlling for confounders, seven predictive behavioural features were identified in the prodromal period (for example, increasing confusion; and being easily distractible). Additionally, using serial cognitive tests and the DRS-R98 daily, multiple cognitive and other core delirium features were detected in the prodrome (for example inattention; and sleep-wake cycle disturbance). Examining longitudinal motor subtypes in delirium cases, subtypes were found to be predominantly stable over time, the most prevalent being hypoactive subtype (62.3%). Discussion This thesis explored multiple aspects of delirium in older medical inpatients, with particular focus on the characterisation of the delirium prodrome. These findings should help to inform future delirium educational programmes, and detection and prevention strategies.
Resumo:
The work described in this thesis focuses on the development of an innovative bioimpedance device for the detection of breast cancer using electrical impedance as the detection method. The ability for clinicians to detect and treat cancerous lesions as early as possible results in improved patient outcomes and can reduce the severity of the treatment the patient has to undergo. Therefore, new technology and devices are continually required to improve the specificity and sensitivity of the accepted detection methods. The gold standard for breast cancer detection is digital x-ray mammography but it has some significant downsides associated with it. The development of an adjunct technology to aid in the detection of breast cancers could represent a significant patient and economic benefit. In this project silicon substrates were pattern with two gold microelectrodes that allowed electrical impedance measurements to be recorded from intact tissue structures. These probes were tested and characterised using a range of in vitro and ex vivo experiments. The end application of this novel sensor device was in a first-in-human clinical trial. The initial results of this study showed that the silicon impedance device was capable of differentiating between normal and abnormal (benign and cancerous) breast tissue. The mean separation between the two tissue types 4,340 Ω with p < 0.001. The cancer type and grade at the site of the probe recordings was confirmed histologically and correlated with the electrical impedance measurements to determine if the different subtypes of cancer could each be differentiated. The results presented in this thesis showed that the novel impedance device demonstrated excellent electrochemical recording potential; was biocompatible with the growth of cultured cell lines and was capable of differentiating between intact biological tissues. The results outlined in this thesis demonstrate the potential feasibility of using electrical impedance for the differentiation of biological tissue samples. The novelty of this thesis is in the development of a new method of tissue determination with an application in breast cancer detection.
Resumo:
Objective: Phenobarbital increases electroclinical uncoupling and our preliminary observations suggest it may also affect electrographic seizure morphology. This may alter the performance of a novel seizure detection algorithm (SDA) developed by our group. The objectives of this study were to compare the morphology of seizures before and after phenobarbital administration in neonates and to determine the effect of any changes on automated seizure detection rates. Methods: The EEGs of 18 term neonates with seizures both pre- and post-phenobarbital (524 seizures) administration were studied. Ten features of seizures were manually quantified and summary measures for each neonate were statistically compared between pre- and post-phenobarbital seizures. SDA seizure detection rates were also compared. Results: Post-phenobarbital seizures showed significantly lower amplitude (p < 0.001) and involved fewer EEG channels at the peak of seizure (p < 0.05). No other features or SDA detection rates showed a statistical difference. Conclusion: These findings show that phenobarbital reduces both the amplitude and propagation of seizures which may help to explain electroclinical uncoupling of seizures. The seizure detection rate of the algorithm was unaffected by these changes. Significance: The results suggest that users should not need to adjust the SDA sensitivity threshold after phenobarbital administration.