2 resultados para Detailed design
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Humans are profoundly affected by the surroundings which they inhabit. Environmental psychologists have produced numerous credible theories describing optimal human environments, based on the concept of congruence or “fit” (1, 2). Lack of person/environment fit can lead to stress-related illness and lack of psychosocial well-being (3). Conversely, appropriately designed environments can promote wellness (4) or “salutogenesis” (5). Increasingly, research in the area of Evidence-Based Design, largely concentrated in the area of healthcare architecture, has tended to bear out these theories (6). Patients and long-term care residents, because of injury, illness or physical/ cognitive impairment, are less likely to be able to intervene to modify their immediate environment, unless this is designed specifically to facilitate their particular needs. In the context of care settings, detailed design of personal space therefore takes on enormous significance. MyRoom conceptualises a personalisable room, utilising sensoring and networked computing to enable the environment to respond directly and continuously to the occupant. Bio-signals collected and relayed to the system will actuate application(s) intended to positively influence user well-being. Drawing on the evidence base in relation to therapeutic design interventions (7), real-time changes in ambient lighting, colour, image, etc. respond continuously to the user’s physiological state, optimising congruence. Based on research evidence, consideration is also given to development of an application which uses natural images (8). It is envisaged that actuation will require machine-learning based on interpretation of data gathered by sensors; sensoring arrangements may vary depending on context and end-user. Such interventions aim to reduce inappropriate stress/ provide stimulation, supporting both instrumental and cognitive tasks.
Resumo:
This paper deals with the monolithic decoupled XYZ compliant parallel mechanisms (CPMs) for multi-function applications, which can be fabricated monolithically without assembly and has the capability of kinetostatic decoupling. At first, the conceptual design of monolithic decoupled XYZ CPMs is presented using identical spatial compliant multi-beam modules based on a decoupled 3-PPPR parallel kinematic mechanism. Three types of applications: motion/positioning stages, force/acceleration sensors and energy harvesting devices are described in principle. The kinetostatic and dynamic modelling is then conducted to capture the displacements of any stage under loads acting at any stage and the natural frequency with the comparisons with FEA results. Finally, performance characteristics analysis for motion stage applications is detailed investigated to show how the change of the geometrical parameter can affect the performance characteristics, which provides initial optimal estimations. Results show that the smaller thickness of beams and larger dimension of cubic stages can improve the performance characteristics excluding natural frequency under allowable conditions. In order to improve the natural frequency characteristic, a stiffness-enhanced monolithic decoupled configuration that is achieved through employing more beams in the spatial modules or reducing the mass of each cubic stage mass can be adopted. In addition, an isotropic variation with different motion range along each axis and same payload in each leg is proposed. The redundant design for monolithic fabrication is introduced in this paper, which can overcome the drawback of monolithic fabrication that the failed compliant beam is difficult to replace, and extend the CPM’s life.