7 resultados para Deficient, normal and excess monsoon years

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tribbles family of genes consist of three members; TRIB1, TRIB2 and TRIB3. Trib1 and Trib2 have been identified as oncogenes that can induce AML in mice. However little is known about how the expressions of the Tribbles family genes are controlled in the cell during haematopoiesis or leukaemogenesis. To investigate the Tribbles genes in leukaemia a bioinformatics approach was used. TRIB2 expression was found to be elevated in T-ALL and ALL with t(1;19). TRIB1 was found not to be significantly elevated in any leukaemic subtypes. Analyses of the TRIB1 and TRIB2 gene signatures in both leukaemic and normal haematopoietic cells identified pathways and transcription factors associated with these signatures. Pathways enriched for the TRIB1 signature included TLR signalling pathways and NF-κB pathways. Transcription factors enriched for this signature include C/EBP and SRF. Enriched for the TRIB2 signature includes T cell signalling pathways and Notch signalling pathways. Transcription factors enriched for this signature include E2F and ETS. Further investigation in vitro confirmed the finding that E2F1 was as a potential regulator of TRIB2 expression. E2F1 is able to directly bind to the TRIB2 promoter region and induce TRIB2 expression. C/EBPα p42 was found to inhibit E2F1 and the p30 isoform was found to cooperate with E2F1 induced activation of the TRIB2 promoter. Indicating the potential presence of a regulatory loop involved in the regulation of the TRIB2 gene. In conclusion we have investigated the Tribbles gene signatures in both normal haematopoietic and leukaemic cells. This has led to the identification of a number of pathways and transcription factors associated with these genes. We have also identified a family of transcription factors directly responsible for the regulation of TRIB2 expression. This regulatory pathway has the potential to be targeted in the treatment of leukaemia with a high TRIB2 signature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ireland’s Old English merchants, and especially those of the Pale, provided the English crown with vital material supplies, finance and intelligence throughout the Nine Years’ War (1594–1603). Yet, surviving official correspondence criticised the mercantile community for providing weak support and accused its members of favouring the queen’s Irish enemies. The reality was that they did both, but their reasons for doing so were complicated. Too often described as a homogenous group, Old English merchants did not all share the same economic ambitions, political views or faith. Examining the specific actions of certain individuals alongside those of the wider community provides a fresh angle on the conflict and sheds new light on the role of Old English merchants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Worldwide, governments are striving to keep people in work to an older age. However, little is known about the effects of work on an older workforce. This thesis aims to investigate the importance of job characteristics to the antecedents and evolution of cardiovascular disease and functional limitations for the older worker (50+ years). Methods: Three studies were used in this thesis. The 5C (Cork Coronary Care Case- Control) Study investigated the association between job strain and a coronary event in males (n=208) 35-74 years old. The Mitchelstown Study examined the association between job characteristics and positive lifestyle behaviours and further, job characteristics and blood pressure for males and females 50-69 years (n=2,047). Finally, the Cork & Kerry Study investigated the physical effects of manual work and reported functional limitations/disabilities in a sample of 60-80 year olds (n=362). Results: Results from the 5C Study show a clear difference between younger (<50 years) and older (≥50 years) workers, with older workers who had a coronary event more likely to have high job strain and low job control. Data from the Mitchelstown Study showed workers with intermediate possibility for development or high quantitative demands (versus low) at work significantly more likely to have co-occurrence of positive lifestyle behaviours. Further, those who had high possibility for development were more likely to have high systolic blood pressure with no indication of recovery from this activation at night. Physically demanding work as reported by the participants of the Cork & Kerry Study was associated with functional limitations and activities of daily living disability for both the paid and unpaid worker. Discussion: The findings from this piece of work highlight the necessity to examine job characteristics and health outcomes in isolation for the over fifties. The challenge is to get this information into the workplace.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of γ-secretase protease activities in development, neurogenesis and the immune system are highlighted by the diversity of its substrates and phenotypic characterization of Presenilin (PS)-deficient transgenic animals. Since the discovery of Amyloid precursor protein (APP) and it’s cleavage by γ-secretase complexes, over 90 other type I membrane proteins have been identified as γ-secretase substrates. We have identified interleukin-1 (IL-1) receptor type I (IL-1R1), toll-like receptor 4 (TLR4) and tumour necrosis factor-α (TNFα) receptor-1 (TNFR1) as novel substrates for - secretase cleavage, which play an important role in innate immunity. In this study, using PS-deficient cells and PS-knockout animal models we examined the role of PS proteins, PS1 and PS2, in IL-1R1-, TLR4- and TNFR1- mediated inflammatory responses. Data presented show that in response to IL- 1β, lipopolysaccharide (LPS) or TNFα, immortalised fibroblasts from PS2- deficient animals have diminished production of specific cytokines and chemokine, with differential reduction in nuclear factor-κB (NF-κB) and (mitogen activated protein kinase) MAPK activities. In contrast, no defect in the response to IL-1β, LPS or TNFα was observed in PS1-deficient immortalised fibroblasts. These observations were confirmed using bone marrow-derived macrophages from PS2-null mice, which also display impaired responsiveness to IL-1β- and LPS, with decreased production of inflammatory cytokines. Furthermore, in whole animal in vivo responses, we show that PS2-deficient animals display ligand (IL-1β, LPS and TNFα)-dependent alterations in the production of specific pro-inflammatory cytokines or chemokines. Importantly, this reduced responsiveness to IL-1β, LPS or TNFα is independent of γ- secretase protease activity and γ-secretase cleavage of TNFR1, IL-1R1 or TLR4. These observations suggest a novel γ-secretase-independent role of PS2 in the regulation of innate immune responsiveness and challenge current concepts regarding the regulation of IL-1β-, LPS- and TNFα-mediated immune signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory bowel diseases (IBD), encompasses a range of chronic, immune-mediated inflammatory disorders that are usually classified under two major relapsing conditions, Crohn’s Disease (CD) and ulcerative colitis (UC). Extensive studies in the last decades have suggested that the etiology of IBD involves environmental and genetic factors that lead to dysfunction of epithelial barrier with consequent deregulation of the mucosal immune system and inadequate responses to gut microbiota.Over the last decade, the microbial species that has attracted the most attention, with respect to CD etiology, is Eschericia coli. In CD tissue, E. coli antigens have also been identified in macrophages within the lamina propria, granulomas, and in the germinal centres of mesenteric lymph nodes of patients. They have been shown to adhere to and invade intestinal epithelial cells whilst also being able to extensively replicate within macrophages. Through the work of genome-wide association studies (GWAS), there is growing evidence to suggest that the microbial imbalance between commensal and pathogenic bacteria in the gut is aided by a defect in the innate immune system. Autophagy represents a recently investigated pathway that is believed to contribute to the pathogenesis of CD, with studies identified a variant of the autophagy gene, ATG16L1, as a susceptibility gene. The aim of my thesis was to study the cellular and molecular mechanism promoted by E.coli strains in epithelial cells and to assess their contribution to IBD pathology. To achieve this we focused on developing both an in vitro and in vivo model of AIEC infection. This allowed us to further our knowledge on possible mechanisms utilised by AIEC that promoted their survival, as well as developing a better understanding of host reactions. We demonstrate a new survival mechanism promoted by E.coli HM605, whereby it induces the expression of the anti-apoptotic proteins Bcl-XL and BCL2, all of which is exacerbated in an autophagy deficient system. We have also demonstrated the presence of AIEC-induced inflammasome responses in epithelial cells which are exacerbated in an autophagy deficient system and expression of NOD-like receptors (NLRs) which might mediate inflammasome responses in vivo. Finally, we used the Citrobacter rodentium model of infectious colitis to identify Pellino3 as an important mediator in the NOD2 pathway and regulator of intestinal inflammation. In summary, we have developed robust and versatile models of AIEC infection as well as provide new insights into AIEC mediated survival pathways. The collected data provides a new perception into why AIEC bacteria are able to prosper in conditions associated with Crohn’s disease patients with a defect in autophagy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is presented in two parts. Data for this research is from the Cork BASELINE (Babies after SCOPE, Evaluating Longitudinal Impact using Neurological and Nutritional Endpoints) Birth Cohort Study (n = 2137). In this prospective birth cohort study, pediatric follow-up with in-person appointments were repeated from the time of birth through to 2, 6 and 12 months, and at 2 years. Body composition was measured by air displacement plethysmography at birth and at 2 months using the PEA POD Infant Body Composition Tracking System. This thesis provides the first extensive report on the study’s 2 year assessment. In part one, the aims were to investigate potential early-life risk factors for childhood overweight and obesity, including rapid growth and body composition in infancy and umbilical cord concentrations of leptin and high molecular weight (HMW) adiponectin. This research is the first to describe rapid growth in early infancy in terms of changes in direct measures of body composition. These are also the first data to examine associations between umbilical cord leptin and HMW adiponectin concentrations and changes in fat and lean mass in early infancy. These data provide additional insight into characterising the growth trajectory in infancy and into the role of perinatal factors in determining infant growth and subsequent overweight/obesity risk. In part two of this thesis, the aims were to quantify vitamin D intake and status at 2 years and to investigate whether 25-hydroxyvitamin D [25(OH)D] concentrations in early pregnancy and in umbilical cord blood are associated with infant growth and body composition. There was a low prevalence of vitamin D deficiency among Irish 2 year olds (n = 742) despite a high prevalence of inadequate intakes and high latitude (51°N). Maternal 25(OH)D concentrations at 15 weeks gestation and cord 25(OH)D concentrations at delivery were not associated with infant growth or adiposity.