4 resultados para Decision Analysis
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The importance of non-destructive techniques (NDT) in structural health monitoring programmes is being critically felt in the recent times. The quality of the measured data, often affected by various environmental conditions can be a guiding factor in terms usefulness and prediction efficiencies of the various detection and monitoring methods used in this regard. Often, a preprocessing of the acquired data in relation to the affecting environmental parameters can improve the information quality and lead towards a significantly more efficient and correct prediction process. The improvement can be directly related to the final decision making policy about a structure or a network of structures and is compatible with general probabilistic frameworks of such assessment and decision making programmes. This paper considers a preprocessing technique employed for an image analysis based structural health monitoring methodology to identify sub-marine pitting corrosion in the presence of variable luminosity, contrast and noise affecting the quality of images. A preprocessing of the gray-level threshold of the various images is observed to bring about a significant improvement in terms of damage detection as compared to an automatically computed gray-level threshold. The case dependent adjustments of the threshold enable to obtain the best possible information from an existing image. The corresponding improvements are observed in a qualitative manner in the present study.
Resumo:
The organisational decision making environment is complex, and decision makers must deal with uncertainty and ambiguity on a continuous basis. Managing and handling decision problems and implementing a solution, requires an understanding of the complexity of the decision domain to the point where the problem and its complexity, as well as the requirements for supporting decision makers, can be described. Research in the Decision Support Systems domain has been extensive over the last thirty years with an emphasis on the development of further technology and better applications on the one hand, and on the other hand, a social approach focusing on understanding what decision making is about and how developers and users should interact. This research project considers a combined approach that endeavours to understand the thinking behind managers’ decision making, as well as their informational and decisional guidance and decision support requirements. This research utilises a cognitive framework, developed in 1985 by Humphreys and Berkeley that juxtaposes the mental processes and ideas of decision problem definition and problem solution that are developed in tandem through cognitive refinement of the problem, based on the analysis and judgement of the decision maker. The framework facilitates the separation of what is essentially a continuous process, into five distinct levels of abstraction of manager’s thinking, and suggests a structure for the underlying cognitive activities. Alter (2004) argues that decision support provides a richer basis than decision support systems, in both practice and research. The constituent literature on decision support, especially in regard to modern high profile systems, including Business Intelligence and Business analytics, can give the impression that all ‘smart’ organisations utilise decision support and data analytics capabilities for all of their key decision making activities. However this empirical investigation indicates a very different reality.
Resumo:
The literature clearly links the quality and capacity of a country’s infrastructure to its economic growth and competitiveness. This thesis analyses the historic national and spatial distribution of investment by the Irish state in its physical networks (water, wastewater and roads) across the 34 local authorities and examines how Ireland is perceived internationally relative to its economic counterparts. An appraisal of the current status and shortcomings of Ireland’s infrastructure is undertaken using key stakeholders from foreign direct investment companies and national policymakers to identify Ireland's infrastructural gaps, along with current challenges in how the country is delivering infrastructure. The output of these interviews identified many issues with how infrastructure decision-making is currently undertaken. This led to an evaluation of how other countries are informing decision-making, and thus this thesis presents a framework of how and why Ireland should embrace a Systems of Systems (SoS) methodology approach to infrastructure decision-making going forward. In undertaking this study a number of other infrastructure challenges were identified: significant political interference in infrastructure decision-making and delivery the need for a national agency to remove the existing ‘silo’ type of mentality to infrastructure delivery how tax incentives can interfere with the market; and their significance. The two key infrastructure gaps identified during the interview process were: the need for government intervention in the rollout of sufficient communication capacity and at a competitive cost outside of Dublin; and the urgent need to address water quality and capacity with approximately 25% of the population currently being served by water of unacceptable quality. Despite considerable investment in its national infrastructure, Ireland’s infrastructure performance continues to trail behind its economic partners in the Eurozone and OECD. Ireland is projected to have the highest growth rate in the euro zone region in 2015 and 2016, albeit that it required a bailout in 2010, and, at the time of writing, is beginning to invest in its infrastructure networks again. This thesis proposes the development and implementation of a SoS approach for infrastructure decision-making which would be based on: existing spatial and capacity data of each of the constituent infrastructure networks; and scenario computation and analysis of alternative drivers eg. Demographic change, economic variability and demand/capacity constraints. The output from such an analysis would provide valuable evidence upon which policy makers and decision makers alike could rely, which has been lacking in historic investment decisions.
Resumo:
The use of Cyber Physical Systems (CPS) to optimise industrial energy systems is an approach which has the potential to positively impact on manufacturing sector energy efficiency. The need to obtain data to facilitate the implementation of a CPS in an industrial energy system is however a complex task which is often implemented in a non-standardised way. The use of the 5C CPS architecture has the potential to standardise this approach. This paper describes a case study where data from a Combined Heat and Power (CHP) system located in a large manufacturing company was fused with grid electricity and gas models as well as a maintenance cost model using the 5C architecture with a view to making effective decisions on its cost efficient operation. A control change implemented based on the cognitive analysis enabled via the 5C architecture implementation has resulted in energy cost savings of over €7400 over a four-month period, with energy cost savings of over €150,000 projected once the 5C architecture is extended into the production environment.