2 resultados para Data-based Safety Evaluation

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective is to investigate the main factors contributing to GMS expenditure on pharmaceutical prescribing and projecting this expenditure to 2026. This study is located in the area of pharmacoeconomic cost containment and projections literature. The thesis has five main aims: 1. To determine the main factors contributing to GMS expenditure on pharmaceutical prescribing. 2. To develop a model to project GMS prescribing expenditure in five year intervals to 2026, using 2006 Central Statistics Office (CSO) Census data and 2007 Health Service Executive{Primary Care Reimbursement Service (HSE{PCRS) sample data. 3. To develop a model to project GMS prescribing expenditure in five year intervals to 2026, using 2012 HSE{PCRS population data, incorporating cost containment measures, and 2011 CSO Census data. 4. To investigate the impact of demographic factors and the pharmacology of drugs (Anatomical Therapeutic Chemical (ATC)) on GMS expenditure. 5. To explore the consequences of GMS policy changes on prescribing expenditure and behaviour between 2008 and 2014. The thesis is centered around three published articles and is located between the end of a booming Irish economy in 2007, a recession from 2008{2013, to the beginning of a recovery in 2014. The literature identified a number of factors influencing pharmaceutical expenditure, including population growth, population aging, changes in drug utilisation and drug therapies, age, gender and location. The literature identified the methods previously used in predictive modelling and consequently, the Monte Carlo Simulation (MCS) model was used to simulate projected expenditures to 2026. Also, the literature guided the use of Ordinary Least Squares (OLS) regression in determining demographic and pharmacology factors influencing prescribing expenditure. The study commences against a backdrop of growing GMS prescribing costs, which has risen from e250 million in 1998 to over e1 billion by 2007. Using a sample 2007 HSE{PCRS prescribing data (n=192,000) and CSO population data from 2008, (Conway et al., 2014) estimated GMS prescribing expenditure could rise to e2 billion by2026. The cogency of these findings was impacted by the global economic crisis of 2008, which resulted in a sharp contraction in the Irish economy, mounting fiscal deficits resulting in Ireland's entry to a bailout programme. The sustainability of funding community drug schemes, such as the GMS, came under the spotlight of the EU, IMF, ECB (Trioka), who set stringent targets for reducing drug costs, as conditions of the bailout programme. Cost containment measures included: the introduction of income eligibility limits for GP visit cards and medical cards for those aged 70 and over, introduction of co{payments for prescription items, reductions in wholesale mark{up and pharmacy dispensing fees. Projections for GMS expenditure were reevaluated using 2012 HSE{PCRS prescribing population data and CSO population data based on Census 2011. Taking into account both cost containment measures and revised population predictions, GMS expenditure is estimated to increase by 64%, from e1.1 billion in 2016 to e1.8 billion by 2026, (ConwayLenihan and Woods, 2015). In the final paper, a cross{sectional study was carried out on HSE{PCRS population prescribing database (n=1.63 million claimants) to investigate the impact of demographic factors, and the pharmacology of the drugs, on GMS prescribing expenditure. Those aged over 75 (ẞ = 1:195) and cardiovascular prescribing (ẞ = 1:193) were the greatest contributors to annual GMS prescribing costs. Respiratory drugs (Montelukast) recorded the highest proportion and expenditure for GMS claimants under the age of 15. Drugs prescribed for the nervous system (Escitalopram, Olanzapine and Pregabalin) were highest for those between 16 and 64 years with cardiovascular drugs (Statins) were highest for those aged over 65. Females are more expensive than males and are prescribed more items across the four ATC groups, except among children under 11, (ConwayLenihan et al., 2016). This research indicates that growth in the proportion of the elderly claimants and associated levels of cardiovascular prescribing, particularly for statins, will present difficulties for Ireland in terms of cost containment. Whilst policies aimed at cost containment (co{payment charges, generic substitution, reference pricing, adjustments to GMS eligibility) can be used to curtail expenditure, health promotional programs and educational interventions should be given equal emphasis. Also policies intended to affect physicians prescribing behaviour include guidelines, information (about price and less expensive alternatives) and feedback, and the use of budgetary restrictions could yield savings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power efficiency is one of the most important constraints in the design of embedded systems since such systems are generally driven by batteries with limited energy budget or restricted power supply. In every embedded system, there are one or more processor cores to run the software and interact with the other hardware components of the system. The power consumption of the processor core(s) has an important impact on the total power dissipated in the system. Hence, the processor power optimization is crucial in satisfying the power consumption constraints, and developing low-power embedded systems. A key aspect of research in processor power optimization and management is “power estimation”. Having a fast and accurate method for processor power estimation at design time helps the designer to explore a large space of design possibilities, to make the optimal choices for developing a power efficient processor. Likewise, understanding the processor power dissipation behaviour of a specific software/application is the key for choosing appropriate algorithms in order to write power efficient software. Simulation-based methods for measuring the processor power achieve very high accuracy, but are available only late in the design process, and are often quite slow. Therefore, the need has arisen for faster, higher-level power prediction methods that allow the system designer to explore many alternatives for developing powerefficient hardware and software. The aim of this thesis is to present fast and high-level power models for the prediction of processor power consumption. Power predictability in this work is achieved in two ways: first, using a design method to develop power predictable circuits; second, analysing the power of the functions in the code which repeat during execution, then building the power model based on average number of repetitions. In the first case, a design method called Asynchronous Charge Sharing Logic (ACSL) is used to implement the Arithmetic Logic Unit (ALU) for the 8051 microcontroller. The ACSL circuits are power predictable due to the independency of their power consumption to the input data. Based on this property, a fast prediction method is presented to estimate the power of ALU by analysing the software program, and extracting the number of ALU-related instructions. This method achieves less than 1% error in power estimation and more than 100 times speedup in comparison to conventional simulation-based methods. In the second case, an average-case processor energy model is developed for the Insertion sort algorithm based on the number of comparisons that take place in the execution of the algorithm. The average number of comparisons is calculated using a high level methodology called MOdular Quantitative Analysis (MOQA). The parameters of the energy model are measured for the LEON3 processor core, but the model is general and can be used for any processor. The model has been validated through the power measurement experiments, and offers high accuracy and orders of magnitude speedup over the simulation-based method.