5 resultados para Data compression (Electronic computers)

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by accurate average-case analysis, MOdular Quantitative Analysis (MOQA) is developed at the Centre for Efficiency Oriented Languages (CEOL). In essence, MOQA allows the programmer to determine the average running time of a broad class of programmes directly from the code in a (semi-)automated way. The MOQA approach has the property of randomness preservation which means that applying any operation to a random structure, results in an output isomorphic to one or more random structures, which is key to systematic timing. Based on original MOQA research, we discuss the design and implementation of a new domain specific scripting language based on randomness preserving operations and random structures. It is designed to facilitate compositional timing by systematically tracking the distributions of inputs and outputs. The notion of a labelled partial order (LPO) is the basic data type in the language. The programmer uses built-in MOQA operations together with restricted control flow statements to design MOQA programs. This MOQA language is formally specified both syntactically and semantically in this thesis. A practical language interpreter implementation is provided and discussed. By analysing new algorithms and data restructuring operations, we demonstrate the wide applicability of the MOQA approach. Also we extend MOQA theory to a number of other domains besides average-case analysis. We show the strong connection between MOQA and parallel computing, reversible computing and data entropy analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work considers the static calculation of a program’s average-case time. The number of systems that currently tackle this research problem is quite small due to the difficulties inherent in average-case analysis. While each of these systems make a pertinent contribution, and are individually discussed in this work, only one of them forms the basis of this research. That particular system is known as MOQA. The MOQA system consists of the MOQA language and the MOQA static analysis tool. Its technique for statically determining average-case behaviour centres on maintaining strict control over both the data structure type and the labeling distribution. This research develops and evaluates the MOQA language implementation, and adds to the functions already available in this language. Furthermore, the theory that backs MOQA is generalised and the range of data structures for which the MOQA static analysis tool can determine average-case behaviour is increased. Also, some of the MOQA applications and extensions suggested in other works are logically examined here. For example, the accuracy of classifying the MOQA language as reversible is investigated, along with the feasibility of incorporating duplicate labels into the MOQA theory. Finally, the analyses that take place during the course of this research reveal some of the MOQA strengths and weaknesses. This thesis aims to be pragmatic when evaluating the current MOQA theory, the advancements set forth in the following work and the benefits of MOQA when compared to similar systems. Succinctly, this work’s significant expansion of the MOQA theory is accompanied by a realistic assessment of MOQA’s accomplishments and a serious deliberation of the opportunities available to MOQA in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, grant 07/CE/I1147)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accepted Version

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A substantial amount of information on the Internet is present in the form of text. The value of this semi-structured and unstructured data has been widely acknowledged, with consequent scientific and commercial exploitation. The ever-increasing data production, however, pushes data analytic platforms to their limit. This thesis proposes techniques for more efficient textual big data analysis suitable for the Hadoop analytic platform. This research explores the direct processing of compressed textual data. The focus is on developing novel compression methods with a number of desirable properties to support text-based big data analysis in distributed environments. The novel contributions of this work include the following. Firstly, a Content-aware Partial Compression (CaPC) scheme is developed. CaPC makes a distinction between informational and functional content in which only the informational content is compressed. Thus, the compressed data is made transparent to existing software libraries which often rely on functional content to work. Secondly, a context-free bit-oriented compression scheme (Approximated Huffman Compression) based on the Huffman algorithm is developed. This uses a hybrid data structure that allows pattern searching in compressed data in linear time. Thirdly, several modern compression schemes have been extended so that the compressed data can be safely split with respect to logical data records in distributed file systems. Furthermore, an innovative two layer compression architecture is used, in which each compression layer is appropriate for the corresponding stage of data processing. Peripheral libraries are developed that seamlessly link the proposed compression schemes to existing analytic platforms and computational frameworks, and also make the use of the compressed data transparent to developers. The compression schemes have been evaluated for a number of standard MapReduce analysis tasks using a collection of real-world datasets. In comparison with existing solutions, they have shown substantial improvement in performance and significant reduction in system resource requirements.