8 resultados para Daly
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Design, synthesis and structural characterization of a series of diphenylacetylene derivatives bearing organosulfur, amide and amine moieties has been achieved in which the molecular conformation is controlled through variation of the hydrogen bond properties on alteration of the oxidisation level of sulfur.
Resumo:
This thesis is focused on the design and synthesis of a diverse range of novel organosulfur compounds (sulfides, sulfoxides and sulfones), with the objective of studying their solid state properties and thereby developing an understanding of how the molecular structure of the compounds impacts upon their solid state crystalline structure. In particular, robust intermolecular interactions which determine the overall structure were investigated. These synthons were then exploited in the development of a molecular switch. Chapter One provides a brief overview of crystal engineering, the key hydrogen bonding interactions utilized in this work and also a general insight into “molecular machines” reported in the literature of relevance to this work. Chapter Two outlines the design and synthetic strategies for the development of two scaffolds suitable for incorporation of terminal alkynes, organosulfur and ether functionalities, in order to investigate the robustness and predictability of the S=O•••H-C≡C- and S=O•••H-C(α) supramolecular synthons. Crystal structures and a detailed analysis of the hydrogen bond interactions observed in these compounds are included in this chapter. Also the biological activities of four novel tertiary amines are discussed. Chapter Three focuses on the design and synthesis of diphenylacetylene compounds bearing amide and sulfur functionalities, and the exploitation of the N-H•••O=S interactions to develop a “molecular switch”. The crystal structures, hydrogen bonding patterns observed, NMR variable temperature studies and computer modelling studies are discussed in detail. Chapter Four provides the overall conclusions from chapter two and chapter three and also gives an indication of how the results of this work may be developed in the future. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project, while details of the NCI (National Cancer Institute) biological test results are included in the appendix.
Resumo:
The case for energy policy modelling is strong in Ireland, where stringent EU climate targets are projected to be overshot by 2015. Policy targets aiming to deliver greenhouse gas and renewable energy targets have been made, but it is unclear what savings are to be achieved and from which sectors. Concurrently, the growth of personal mobility has caused an astonishing increase in CO2 emissions from private cars in Ireland, a 37% rise between 2000 and 2008, and while there have been improvements in the efficiency of car technology, there was no decrease in the energy intensity of the car fleet in the same period. This thesis increases the capacity for evidenced-based policymaking in Ireland by developing techno-economic transport energy models and using them to analyse historical trends and to project possible future scenarios. A central focus of this thesis is to understand the effect of the car fleet‘s evolving technical characteristics on energy demand. A car stock model is developed to analyse this question from three angles: Firstly, analysis of car registration and activity data between 2000 and 2008 examines the trends which brought about the surge in energy demand. Secondly, the car stock is modelled into the future and is used to populate a baseline “no new policy” scenario, looking at the impact of recent (2008-2011) policy and purchasing developments on projected energy demand and emissions. Thirdly, a range of technology efficiency, fuel switching and behavioural scenarios are developed up to 2025 in order to indicate the emissions abatement and renewable energy penetration potential from alternative policy packages. In particular, an ambitious car fleet electrification target for Ireland is examined. The car stock model‘s functionality is extended by linking it with other models: LEAP-Ireland, a bottom-up energy demand model for all energy sectors in the country; Irish TIMES, a linear optimisation energy system model; and COPERT, a pollution model. The methodology is also adapted to analyse trends in freight energy demand in a similar way. Finally, this thesis addresses the gap in the representation of travel behaviour in linear energy systems models. A novel methodology is developed and case studies for Ireland and California are presented using the TIMES model. Transport Energy
Resumo:
Defects in commercial cheese result in a downgrading of the final cheese and a consequential economic loss to the cheese producer. Developments of defects in cheese are often not fully understood and therefore not controllable by the producer. This research investigated the underlying factors in the development of split and secondary fermentation defect and of pinking defects in commercial Irish cheeses. Split defect in Swiss-type cheese is a common defect associated with eye formation and manifests as slits and cracks visible in the cut cheese loaf (Reinbold, 1972; Daly et al., 2010). No consensus exists as to the definitive causes of the defect and possible factors which may contribute to the defect were reviewed. Models were derived to describe the relationship between moisture, pH, and salt levels and the distance from sample location to the closest external block surface during cheese ripening. Significant gradients within the cheese blocks were observed for all measured parameters in cheeses at 7 day post/after manufacture. No significant pH gradient was found within the blocks on exit from hot-room ripening and at three months post exit from the hot-room. Moisture content reached equilibrium within the blocks between exit from hot-room and 3 months after exit from hot-room while salt and salt-to-moisture levels had not reached equilibrium within the cheese blocks even at three months after exit from hot-room ripening. A characterisation of Swiss-type cheeses produced from a seasonal milk supply was undertaken. Cheeses were sampled on two days per month of the production year, at three different times during the manufacturing day, at internal and external regions of the cheese block and at four ripening time points (7 days post manufacture, post hot-room, 14 days post hot-room and 3 months in a cold room after exit from hot-room). Compositional, biochemical and microbial indices were determined, and the results were analysed as a splitplot with a factorial arrangement of treatments (season, time of day, area) on the main plot and ripening time on the sub-plot. Season (and interactions) had a significant effect on pH and salt-in-moisture levels (SM), mean viable counts of L. helveticus, propionic acid and non-starter lactic acid bacteria, levels of primary and secondary proteolysis and cheese firmness. Levels of proteolysis increased significantly during hot-room ripening but also during cold room storage, signifying continued development of cheese ripening during cold storage (> 8°C). Rheological parameters (e.g. springiness and cohesiveness) were significantly affected by interactions between ripening and location within cheese blocks. Time of day of manufacture significantly affected mean cheese calcium levels at 7 days post manufacture and mean levels of arginine and mean viable counts of NSLAB. Cheeses produced during the middle of the production day had the best grading scores and were more consistent compared to cheeses produced early or late during day of manufacture. Cheeses with low levels of S/M and low values of resilience were associated with poor grades at 7 days post manufacture. Chesses which had high elastic index values and low values of springiness in the external areas after exit from hot-room ripening also obtained good commercial grades. Development of a pink colour defect is an intermittent defect in ripened cheese which may or may not contain an added colourant, e.g., annatto. Factors associated with the defect were reviewed. Attempts at extraction and identification of the pink discolouration were unsuccessful. The pink colour partitioned with the water insoluble protein fraction. No significant difference was observed between ripened control and defect cheese for oxygen levels and redox potential or for the results of elemental analysis. A possible relationship between starter activity and defect development was established in cheeses with added coulourant, as lower levels of residual galactose and lactose were observed in defective cheese compared to control cheese free of the defect. Swiss-type cheese without added colourant had significantly higher levels of arginine and significantly lower lactate levels. Flow cell cytometry indicated that levels of bacterial cell viability and metabolic state differed between control and defect cheeses (without added colourant). Pyrosequencing analysis of cheese samples with and without the defect detected the previously unreported bacteria in cheese, Deinococcus thermus (a potential carotenoid producer). Defective Swiss-type cheeses had elevated levels of Deinococcus thermus compared to control cheeses, however the direct cause of pink was not linked to this bacterium alone. Overall, research was undertaken on underlying factors associated with the development of specific defects in commercial cheese, but also characterised the dynamic changes in key microbial and physicochemical parameters during cheese ripening and storage. This will enable the development of processing technologies to enable seasonal manipulation of manufacture protocols to minimise compositional and biochemical variability and to reduce and inhibit the occurrence of specific quality defects.
Resumo:
Future high speed communications networks will transmit data predominantly over optical fibres. As consumer and enterprise computing will remain the domain of electronics, the electro-optical conversion will get pushed further downstream towards the end user. Consequently, efficient tools are needed for this conversion and due to many potential advantages, including low cost and high output powers, long wavelength Vertical Cavity Surface Emitting Lasers (VCSELs) are a viable option. Drawbacks, such as broader linewidths than competing options, can be mitigated through the use of additional techniques such as Optical Injection Locking (OIL) which can require significant expertise and expensive equipment. This thesis addresses these issues by removing some of the experimental barriers to achieving performance increases via remote OIL. Firstly, numerical simulations of the phase and the photon and carrier numbers of an OIL semiconductor laser allowed the classification of the stable locking phase limits into three distinct groups. The frequency detuning of constant phase values (ø) was considered, in particular ø = 0 where the modulation response parameters were shown to be independent of the linewidth enhancement factor, α. A new method to estimate α and the coupling rate in a single experiment was formulated. Secondly, a novel technique to remotely determine the locked state of a VCSEL based on voltage variations of 2mV−30mV during detuned injection has been developed which can identify oscillatory and locked states. 2D & 3D maps of voltage, optical and electrical spectra illustrate corresponding behaviours. Finally, the use of directly modulated VCSELs as light sources for passive optical networks was investigated by successful transmission of data at 10 Gbit/s over 40km of single mode fibre (SMF) using cost effective electronic dispersion compensation to mitigate errors due to wavelength chirp. A widely tuneable MEMS-VCSEL was established as a good candidate for an externally modulated colourless source after a record error free transmission at 10 Gbit/s over 50km of SMF across a 30nm single mode tuning range. The ability to remotely set the emission wavelength using the novel methods developed in this thesis was demonstrated.
Resumo:
The organisational decision making environment is complex, and decision makers must deal with uncertainty and ambiguity on a continuous basis. Managing and handling decision problems and implementing a solution, requires an understanding of the complexity of the decision domain to the point where the problem and its complexity, as well as the requirements for supporting decision makers, can be described. Research in the Decision Support Systems domain has been extensive over the last thirty years with an emphasis on the development of further technology and better applications on the one hand, and on the other hand, a social approach focusing on understanding what decision making is about and how developers and users should interact. This research project considers a combined approach that endeavours to understand the thinking behind managers’ decision making, as well as their informational and decisional guidance and decision support requirements. This research utilises a cognitive framework, developed in 1985 by Humphreys and Berkeley that juxtaposes the mental processes and ideas of decision problem definition and problem solution that are developed in tandem through cognitive refinement of the problem, based on the analysis and judgement of the decision maker. The framework facilitates the separation of what is essentially a continuous process, into five distinct levels of abstraction of manager’s thinking, and suggests a structure for the underlying cognitive activities. Alter (2004) argues that decision support provides a richer basis than decision support systems, in both practice and research. The constituent literature on decision support, especially in regard to modern high profile systems, including Business Intelligence and Business analytics, can give the impression that all ‘smart’ organisations utilise decision support and data analytics capabilities for all of their key decision making activities. However this empirical investigation indicates a very different reality.
Resumo:
Background: I conducted my research in the context of The National Literacy Strategy (DES, 2011), which maintains that every young person should be literate and it outlines targets for improving literacy in schools from 2011 to 2020. There has been much debate on the teaching of literacy and in particular the teaching of reading. Clark (2014) outlines how learning to read should be a developmental language process and that the approaches in the early years of schooling will colour the children’s motivation and their perception of reading as a purposeful activity. The acquisition of literacy begins in the home but this study focuses on the implementation of a literacy intervention Station Teaching in the infant classes in primary school. Station Teaching occurs when a class is divided into four or five small groups of pupils and they receive intensive tuition at four or five different Stations with the help of Support teachers: New Reading, Familiar Reading, Phonics, Writing and Oral Language. Research Questions: These research questions frame my study: How is Station Teaching implemented? What is the experience of the intervention Station Teaching from the participants’ point of view: teachers, pupils, parents? What notion of literacy is Station Teaching facilitating? Methods: I chose a pragmatic parallel mixed methods design as suggested by Mertens (2010). I collected and analysed both the quantitative and qualitative data to answer the study’s research questions. In the study the quantitative data were collected from a questionnaire issued to 21 schools in Ireland. I used Excel as a data management package and thematic analysis to analyse and present the data in themes. I collected qualitative data from a case study in a school. This data included observations of two classes over a period of a year; interviews with teachers, pupils and parents; children’s drawings, photographs, teachers’ diaries and video evidence. I analysed and presented the evidence from the qualitative data in themes. Main Findings: There are many skills and strategies that are essential to effective literacy teaching in the early years including phonological awareness, phonics, vocabulary, fluency, comprehension and writing. These skills can be taught during Station Teaching. Early intervention in the early years is essential to pupils’ acquisition of literacy. The expertise of the teacher is key to improving the literacy achievement of pupils Teachers and pupils enjoy participating in ST. Pupils are motivated to read and engage in meaningful activities during ST. Staff collaboration is vital for ST to succeed ST facilitates small group work and teachers can differentiate accordingly while including all pupils in the groups. Pupils’ learning is extended in ST but extension activities need to be addressed in the Writing Station. More training should be provided for teachers on the implementation of ST and more funding for resources should be available to schools Significant contribution of the work: The main significance of the study includes: insights into the classroom implementation of Station Teaching in infant classes and extensive research into characteristics of an effective teacher of literacy.
Resumo:
Background: For tibial fractures, the decision to fix a concomitant fibular fracture is undertaken on a case-by-case basis. To aid in this clinical decision-making process, we investigated whether loss of integrity of the fibula significantly destabilises midshaft tibial fractures, whether fixation of the fibula restores stability to the tibia, and whether removal of the fibula and interosseous membrane for expediency in biomechanical testing significantly influences tibial interfragmentary mechanics. Methods: Tibia/fibula pairs were harvested from six cadaveric donors with the interosseous membrane intact. A tibial osteotomy fracture was fixed by reamed intramedullary (IM) nailing. Axial, torsion, bending, and shear tests were completed for four models of fibular involvement: intact fibula, osteotomy fracture, fibular plating, and resected fibula and interosseous membrane. Findings: Overall construct stiffness decreased slightly with fibular osteotomy compared to intact bone, but this change was not statistically significant. Under low loads, the influence of the fibula on construct stability was only statistically significant in torsion (large effect size). Fibular plating stiffened the construct slightly, but this change was not statistically significant compared to the fibular osteotomy case. Complete resection of the fibula and interosseous membrane significantly decreased construct torsional stiffness only (large effect size). Interpretation: These results suggest that fixation of the fibula may not contribute significantly to the stability of diaphyseal tibial fractures and should not be undertaken unless otherwise clinically indicated. For testing purposes, load-sharing through the interosseous membrane contributes significantly to overall construct mechanics, especially in torsion, and we recommend preservation of these structures when possible.