2 resultados para DUFFY

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In-situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping (MLD) has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A surface sensitivity study was performed on different transition-metal dichalcogenides (TMDs) under ambient conditions in order to understand which material is the most suitable for future device applications. Initially, Atomic Force Microscopy and Scanning Electron Microscopy studies were carried out over a period of 27 days on mechanically exfoliated flakes of 5 different TMDs, namely, MoS2, MoSe2, MoTe2, HfS2, and HfSe2. The most reactive were MoTe2 and HfSe2. HfSe2, in particular, showed surface protrusions after ambient exposure, reaching a height and width of approximately 60 nm after a single day. This study was later supplemented by Transmission Electron Microscopy (TEM) cross-sectional analysis, which showed hemispherical-shaped surface blisters that are amorphous in nature, approximately 180–240 nm tall and 420–540 nm wide, after 5 months of air exposure, as well as surface deformation in regions between these structures, related to surface oxidation. An X-ray photoelectron spectroscopy study of atmosphere exposed HfSe2 was conducted over various time scales, which indicated that the Hf undergoes a preferential reaction with oxygen as compared to the Se. Energy-Dispersive X-Ray Spectroscopy showed that the blisters are Se-rich; thus, it is theorised that HfO2 forms when the HfSe2 reacts in ambient, which in turn causes the Se atoms to be aggregated at the surface in the form of blisters. Overall, it is evident that air contact drastically affects the structural properties of TMD materials. This issue poses one of the biggest challenges for future TMD-based devices and technologies.