5 resultados para DJ194(nifZ deletion mutant of Azotobacter Vinelandii)
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
M66 an X-ray induced mutant of winter wheat (Triticum aestivum) cv. Guardian exhibits broad-spectrum resistance to powdery mildew (Blumeria graminis f. sp. tritici), yellow rust (Puccinia striiformis f. sp. tritici), and leaf rust (Puccinia recondita f. sp. tritici), along with partial resistance to stagnonospora nodorum blotch (caused by the necrotroph Stagonosporum nodorum) and septoria tritici blotch (caused by the hemibiotroph Mycosphaerella graminicola) compared to the parent plant ‘Guardian’. Analysis revealed that M66 exhibited no symptoms of infection following artificial inoculation with Bgt in the glasshouse after adult growth stage (GS 45). Resistance in M66 was associated with widespread leaf flecking which developed during tillering. Flecking also occurred in M66 leaves without Bgt challenge; as a result grain yields were reduced by approximately 17% compared to ‘Guardian’ in the absence of disease. At the seedling stage, M66 exhibited partial resistance. M66, along with Tht mutants (Tht 12, Tht13), also exhibit increased tolerance to environmental stresses (abiotic), such as drought and heat stress at seedling and adult growth stages, However, adult M66 exhibited increased susceptibility to the aphid Schizaphis graminum compared to ‘Guardian’. Resistance to Bgt in M66 was characterized with increased and earlier H2O2 accumulation at the site of infection which resulted in increased papilla formation in epidermal cells, compared to ‘Guardian’. Papilla formation was associated with reduced pathogen ingress and haustorium formation, indicating that the primary cause of resistance in M66 was prevention of pathogen penetration. Heat treatment at 46º C prior to challenge with Bgt also induced partial disease resistance to Blumeria graminis f. sp. tritici in ‘Guardian’ and M66 seedlings. This was characterized by a delay in primary infection, due to increased production of ROS species, such as hydrogen peroxide, ROS-scavenging enzymes and Hsp70, resulting in cross-linking of cell wall components prior to inoculation. This actively prevented the fungus from penetrating the epidermal cell wall. Proteomics analysis using 2-D gel electrophoresis identified primary and secondary disease resistance effects in M66 including detection of ROS scavenging enzymes (4, 24 hai), such as ascorbate peroxidase and a superoxidase dismutase isoform (CuZnSOD) in M66 which were absent from ‘Guardian’. Chitinase (PR protein) was also upregulated (24 hai) in M66 compared to ‘Guardian’.Monosomic and ditelosomic analysis of M66 revealed that the mutation in M66 is located on the long arm of chromosome 2B (2BL). Chromosome 2BL is known to have key genes involved in resistance to pathogens such as those causing stripe rust and powdery mildew. The TaMloB1 gene, an orthologue of the barley Mlo gene, is also located on chromosome 2BL. Sanger sequencing of part of the coding sequence revealed no deletions in the TaMloB1 gene between ‘Guardian’ and M66.
Resumo:
Rab4 is a member of the Rab superfamily of small GTPases. It is localized to the early sorting endosome and plays a role in regulating the transport from this compartment to the recycling and degradative pathways. In order to further our understanding of the role Rab4 plays in endocytosis, a yeast two-hybrid screen was performed to identify putative Rab4 effectors. A constitutively active mutant of Rab4, Rab4Q67L, when used as bait to screen a HeLa cDNA library, identified a novel 80kDa protein that interacted with Rab4-GTP. This protein was called Rab Coupling Protein (RCP). RCP interacts preferentially with the GTP-bound form of Rab4. Subsequent work demonstrated that RCP also interacts with Rab11, and that this interaction is not nucleotide-depenedent. RCP is predominantly membrane-bound and localised to the perinuclear recycling compartment. Expression of a truncation mutant of RCP, that contains the Rab binding domain, in HeLa cells, results in the formation of an extensive tubular network that can be labelled with transferrin. These tubules are derived from the recycling compartment since they are inaccessible to transferrin when the ligand is internalised at 18oC. The truncation mutant-induced morphology can be rescued by overexpression of active Rab11, but not active Rab4. This suggests that RCP functions between Rab4 and Rab11 in the receptor recycling pathway, and may act as a ‘molecular bridge’ between these two sequentially acting small GTPases. Quantitative assays demonstrated that overexpression of the truncation mutant results in a dramatic inhibition in the rate of receptor recycling. Database analysis revealed that RCP belongs to a family of Rab interacting proteins, each characterised by a carboxy-terminal coiled-coil domain and an amino-terminal phospholipid-binding domain. KIAA0941, an RCP homologue, interacts with Rab11, but not with Rab4. Overexpression of its Rab binding domain also results in a tubular network, however, this tubulation cannot be rescued by active Rab11.
Resumo:
Lactococcus lactis is used extensively world-wide for the production of fermented dairy products. Bacteriophages (phages) infecting L. lactis can result in slow or incomplete fermentations, or may even cause total fermentation failure. Therefore, bacteriophages disrupting L. lactis fermentation are of economic concern. This thesis employed a multifaceted approach to investigate various molecular aspects of phage-host interaction in L. lactis. The genome sequence of an Irish dairy starter strain, the prophage-cured L. lactis subsp. cremoris UC509.9, was studied. The 2,250,427 bp circular chromosome represents the smallest among its sequenced lactococcal equivalents. The genome displays clear genetic adaptation to the dairy niche in the form of extensive reductive evolution. Gene prediction identified 2066 protein-encoding genes, including 104 which showed significant homology to transposase-specifying genes. Over 9 % of the identified genes appear to be inactivated through stop codons or frame shift mutations. Many pseudogenes were found in genes that are assigned to carbohydrate and amino acid transport and metabolism orthologous groups, reflecting L. lactis UC509.9’s adaptation to the lactose and casein-rich dairy environment. Sequence analysis of the eight plasmids of L. lactis revealed extensive adaptation to the dairy environment. Key industrial phenotypes were mapped and novel lactococcal plasmid-associated genes highlighted. In addition to chromosomally-encoded bacteriophage resistance systems, six functional such systems were identified, including two abortive infection systems, AbiB and AbiD1, explaining the observed phage resistance of L. lactis UC509.9 Molecular analysis suggests that the constitutive expression of AbiB is not lethal to cells, suggesting the protein is expressed in an un/inactivated form. Analysis of 936 species phage sk1-escape mutants of AbiB revealed that all such mutants harbour mutations in orf6, which encodes the major capsid protein. Results suggest that the major capsid protein is required for activation of the AbiB system, although this requires furrther investigations. Temporal transcriptomes of L. lactis UC509.9 undergoing lytic infection with either one of two distinct bacteriophages, Tuc2009 and c2, was determined and compared to the transcriptome of uninfected UC509.9 cells. Whole genome microarrays performed at various time-points post-infection demonstrated a rather modest impact on host transcription. Alterations in the UC509.9 transcriptome during lytic infection appear phage-specific, with a relatively small number of differentially transcribed genes shared between infection with either Tuc2009 or c2. Transcriptional profiles of both bacteriophages during lytic infection was shown to generally correlate with previous studies and allowed the confirmation of previously predicted promoter sequences. Bioinformatic analysis of genomic regions encoding the presumed cell wall polysaccharide (CW PS) biosynthesis gene cluster of several strains of L. lactis was performed. Results demonstrate the presence of three dominant genetic types of this gene cluster, termed type A, B and C. These regions were used for the development of a multiplex PCR to identify CW PS genotype of various lactococcal strains. Analysis of 936 species phage receptor binding protein phylogeny (RBP) and CW PS genotype revealed an apparent correlation between RBP phylogeny and CW PS type, thereby providing a partial explanation for the observed narrow host range of 936 phages. Further analysis of the genetic locus encompassing the presumed CW PS biosynthesis operon of eight strains identified as belonging to the CW PS C (geno)type, revealed the presence of a variable region among the examined strains. The obtained comparative analysis allowed for the identification of five subgroups of the C type, named C1 to C5. We purified an acidic polysaccharide from the cell wall of L. lactis 3107 (C2 subtype) and confirmed that it is structurally different from the CW PS of the C1 subtype L. lactis MG1363. Combinations of genes from the variable region of C2 subtype were amplified from L. lactis 3107 and introduced into a mutant of the C1 subtype L. lactis NZ9000 (a direct derivative of MG1363) deficient in CW PS biosynthesis. The resulting recombinant mutant synthesized a CW PS with a composition characteristic for that of the C2 subtype L. lactis 3107 and not the wildtype C1 L. lactis NZ9000. The recombinant mutant exhibited a changed phage resistance/sensitivity profile consistent with that of L. lactis 3107, which unambiguously demonstrated that L. lactis 3107 CW PS is the host cell surface receptor of two bacteriophages belonging to the P335 species as well as phages that are member of the 936 species. The research presented in this thesis has significantly advanced our understanding of L. lactis bacteriophage-host interactions in several ways. Firstly, the examination of plasmidencoded bacteriophage resistance systems has allowed inferences to be made regarding the mode of action of AbiB, thereby providing a platform for further elucidation of the molecular trigger of this system. Secondly, the phage infection transcriptome data presented, in addition to previous work, has made L. lactis a model organism in terms of transcriptomic studies of bacteriophage-host interactions. And finally, the research described in this thesis has for the first time explicitly revealed the nature of a carbohydrate bacteriophage receptor in L. lactis, while also providing a logical explanation for the observed narrow host ranges exhibited by 936 and P335 phages. Future research in discerning the structures of other L. lactis CW PS, combined with the determination of the molecular interplay between receptor binding proteins of these phages and CW PS will allow an in depth understanding of the mechanism by which the most prevalent lactococcal phages identify and adsorb to their specific host.
Resumo:
Insertion and/or deletion mutations of the CALR gene have recently been demonstrated to be the second most common driver mutations in the myeloproliferative neoplasms (MPNs) of essential thrombocythemia (ET) and primary myelofibrosis (PMF). Given the diagnostic and emerging prognostic significance of these mutations, in addition to the geographical heterogeneity reported, the incidence of CALR mutations was determined in an Irish cohort of patients with MPNs with a view to incorporate this analysis into a prospective screening program. A series of 202 patients with known or suspected ET and PMF were screened for the presence of CALR mutations. CALR mutations were detected in 58 patients. Type 1 and Type 1-like deletion mutations were the most common (n = 40) followed by Type 2 and Type 2-like insertion mutations (n = 17). The CALR mutation profile in Irish ET and PMF patients appears similar to that in other European populations. Establishment of this mutational profile allows the introduction of a rational, molecular diagnostic algorithm in cases of suspected ET and PMF that will improve clinical management.
Resumo:
HFE is a transmembrane protein that becomes N-glycosylated during transport to the cell membrane. It acts to regulate cellular iron uptake by interacting with the Type 1 transferrin receptor and interfering with its ability to bind iron-loaded transferrin. There is also evidence that HFE regulates systemic iron levels by binding to the Type II transferrin receptor although the mechanism by which this occurs is still not well understood. Mutations to HFE that disrupt this function, or physiological conditions that decrease HFE protein levels, are associated with increased iron uptake, and its accumulation in tissues and organs. This is exemplified by the point mutation that results in conversion of cysteine residue 282 to tyrosine (C282Y), and gives rise to the majority of HFE-related hemochromatoses. The C282Y mutation prevents the formation of a disulfide bridge and disrupts the interaction with its co-chaperone β2-microglobulin. The resulting misfolded protein is retained within the endoplasmic reticulum (ER) where it activates the Unfolded Protein Response (UPR) and is subjected to proteasomal degradation. The absence of functional HFE at the cell surface leads to unregulated iron uptake and iron loading. While the E3 ubiquitin ligase involved in the degradation of HFE-C282Y has been identified, the mechanism by which it is targeted for degradation remains relatively obscure. The primary objective of this project was to further our understanding of how the iron regulatory HFE protein is targeted for degradation. Our studies suggest that the glycosylation status, and the active process of deglycosylation, are central to this process. We identified a number of additional factors that can contribute towards degradation and explored their regulation during ER stress conditions.