10 resultados para DEVELOPMENT MODELS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth/differentiation factor 5 (GDF5) and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors that promote the survival of midbrain dopaminergic neurons in vitro and in vivo. Both factors have potent neurotrophic and neuroprotective effects in rat models of Parkinson's disease (PD), and may represent promising new therapies for PD. The aim of the present study was to investigate the endogenous expression and function of GDF5 and GDNF in the nigrostriatal dopaminergic system during development and in rat models of PD. Examination of the temporal expression patterns of endogenous GDF5, GDNF, and their respective receptors, in the developing and adult nigrostriatal dopaminergic system suggest that these factors play important roles in promoting the survival and maturation of midbrain dopaminergic neurons during the period of postnatal programmed cell death. The relative levels of GDF5 and GDNF mRNAs in the midbrain and striatum, and their individual temporal expression patterns during development, suggest that their modes of actions are quite distinct in vivo. Furthermore, the sustained expression of GDF5, GDNF, and their receptors into adulthood suggest roles for these factors in the continued support and maintenance of mature nigrostriatal dopaminergic neurons. The present study found that endogenous GDF5, GDNF, and their receptors are differentially expressed in two 6-hydroxydopamine-induced lesion adult rat models of PD. In both terminal and axonal lesion models of PD, GDF5 mRNA levels in the striatum increased at 10 days post-lesion, while GDNF mRNA levels in the nigrostriatal system decreased at 10 and 28 days post-lesion. Thus, despite the fact that exogenous GDF5 and GDNF have similar effects on midbrain dopaminergic neurons in vitro and in vivo, their endogenous responses to a neurotoxic injury are quite distinct. These results highlight the importance of studying the temporal dynamic changes in neurotrophic factor expression during development and in animal models of PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buildings consume 40% of Ireland's total annual energy translating to 3.5 billion (2004). The EPBD directive (effective January 2003) places an onus on all member states to rate the energy performance of all buildings in excess of 50m2. Energy and environmental performance management systems for residential buildings do not exist and consist of an ad-hoc integration of wired building management systems and Monitoring & Targeting systems for non-residential buildings. These systems are unsophisticated and do not easily lend themselves to cost effective retrofit or integration with other enterprise management systems. It is commonly agreed that a 15-40% reduction of building energy consumption is achievable by efficiently operating buildings when compared with typical practice. Existing research has identified that the level of information available to Building Managers with existing Building Management Systems and Environmental Monitoring Systems (BMS/EMS) is insufficient to perform the required performance based building assessment. The cost of installing additional sensors and meters is extremely high, primarily due to the estimated cost of wiring and the needed labour. From this perspective wireless sensor technology provides the capability to provide reliable sensor data at the required temporal and spatial granularity associated with building energy management. In this paper, a wireless sensor network mote hardware design and implementation is presented for a building energy management application. Appropriate sensors were selected and interfaced with the developed system based on user requirements to meet both the building monitoring and metering requirements. Beside the sensing capability, actuation and interfacing to external meters/sensors are provided to perform different management control and data recording tasks associated with minimisation of energy consumption in the built environment and the development of appropriate Building information models(BIM)to enable the design and development of energy efficient spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many deterministic models with hysteresis have been developed in the areas of economics, finance, terrestrial hydrology and biology. These models lack any stochastic element which can often have a strong effect in these areas. In this work stochastically driven closed loop systems with hysteresis type memory are studied. This type of system is presented as a possible stochastic counterpart to deterministic models in the areas of economics, finance, terrestrial hydrology and biology. Some price dynamics models are presented as a motivation for the development of this type of model. Numerical schemes for solving this class of stochastic differential equation are developed in order to examine the prototype models presented. As a means of further testing the developed numerical schemes, numerical examination is made of the behaviour near equilibrium of coupled ordinary differential equations where the time derivative of the Preisach operator is included in one of the equations. A model of two phenotype bacteria is also presented. This model is examined to explore memory effects and related hysteresis effects in the area of biology. The memory effects found in this model are similar to that found in the non-ideal relay. This non-ideal relay type behaviour is used to model a colony of bacteria with multiple switching thresholds. This model contains a Preisach type memory with a variable Preisach weight function. Shown numerically for this multi-threshold model is a pattern formation for the distribution of the phenotypes among the available thresholds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research, which focused on the Irish adult population, was to generate information for policymakers by applying statistical analyses and current technologies to oral health administrative and survey databases. Objectives included identifying socio-demographic influences on oral health and utilisation of dental services, comparing epidemiologically-estimated dental treatment need with treatment provided, and investigating the potential of a dental administrative database to provide information on utilisation of services and the volume and types of treatment provided over time. Information was extracted from the claims databases for the Dental Treatment Benefit Scheme (DTBS) for employed adults and the Dental Treatment Services Scheme (DTSS) for less-well-off adults, the National Surveys of Adult Oral Health, and the 2007 Survey of Lifestyle Attitudes and Nutrition in Ireland. Factors associated with utilisation and retention of natural teeth were analysed using count data models and logistic regression. The chi-square test and the student’s t-test were used to compare epidemiologically-estimated need in a representative sample of adults with treatment provided. Differences were found in dental care utilisation and tooth retention by Socio-Economic Status. An analysis of the five-year utilisation behaviour of a 2003 cohort of DTBS dental attendees revealed that age and being female were positively associated with visiting annually and number of treatments. Number of adults using the DTBS increased, and mean number of treatments per patient decreased, between 1997 and 2008. As a percentage of overall treatments, restorations, dentures, and extractions decreased, while prophylaxis increased. Differences were found between epidemiologically-estimated treatment need and treatment provided for those using the DTBS and DTSS. This research confirms the utility of survey and administrative data to generate knowledge for policymakers. Public administrative databases have not been designed for research purposes, but they have the potential to provide a wealth of knowledge on treatments provided and utilisation patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern neuroscience relies heavily on sophisticated tools that allow us to visualize and manipulate cells with precise spatial and temporal control. Transgenic mouse models, for example, can be used to manipulate cellular activity in order to draw conclusions about the molecular events responsible for the development, maintenance and refinement of healthy and/or diseased neuronal circuits. Although it is fairly well established that circuits respond to activity-dependent competition between neurons, we have yet to understand either the mechanisms underlying these events or the higher-order plasticity that synchronizes entire circuits. In this thesis we aimed to develop and characterize transgenic mouse models that can be used to directly address these outstanding biological questions in different ways. We present SLICK-H, a Cre-expressing mouse line that can achieve drug-inducible, widespread, neuron-specific manipulations in vivo. This model is a clear improvement over existing models because of its particularly strong, widespread, and even distribution pattern that can be tightly controlled in the absence of drug induction. We also present SLICK-V::Ptox, a mouse line that, through expression of the tetanus toxin light chain, allows long-term inhibition of neurotransmission in a small subset (<1%) of fluorescently labeled pyramidal cells. This model, which can be used to study how a silenced cell performs in a wildtype environment, greatly facilitates the in vivo study of activity-dependent competition in the mammalian brain. As an initial application we used this model to show that tetanus toxin-expressing CA1 neurons experience a 15% - 19% decrease in apical dendritic spine density. Finally, we also describe the attempt to create additional Cre-driven mouse lines that would allow conditional alteration of neuronal activity either by hyperpolarization or inhibition of neurotransmission. Overall, the models characterized in this thesis expand upon the wealth of tools available that aim to dissect neuronal circuitry by genetically manipulating neurons in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterised by the loss of midbrain dopaminergic neurons from the substantia nigra pars compacta(SNpc), which results in motor, cognitive and psychiatric symptoms. Evidence supports a role for the mitogen-activated protein kinase p38 in the demise of dopaminergic neurons, while mitogen-activated protein kinase phosphatase-1 (MKP-1), which negatively regulates p38 activity, has not yet been investigated in this context. Inflammation may also be associated with the neuropathology of PD due to evidence of increased levels of proinflammatory cytokines such as interleukin-1β (IL-1β) within the SNpc. Because of the specific loss of dopaminergic neurons in a discreet region of the brain, PD is considered a suitable candidate for cell replacement therapy but challenges remain to optimise dopaminergic cell survival and morphological development. The present thesis examined the role of MKP-1 in neurotoxic and inflammatory-induced changes in the development of midbrain dopaminergic neurons. We show that MKP-1 is expressed in dopaminergic neurons cultured from embryonic day (E) 14 rat ventral mesencephalon (VM). Inhibition of dopaminergic neurite growth induced by treatment of rat VM neurons with the dopaminergic neurotoxin 6- hydroxydopamine (6-OHDA) is mediated by p38, and is concomitant with a significant and selective decrease in MKP-1 expression in these neurons. Dopaminergic neurons transfected to overexpress MKP-1 displayed a more complex morphology and contributed to neuroprotection against the effects of 6-OHDA. Therefore, MKP-1 expression can promote the growth and elaboration of dopaminergic neuronal processes and can help protect them from the neurotoxic effects of 6-OHDA. Neural precursor cells (NPCs) have emerged as promising alternative candidates to fetal VM for cell replacement strategies in PD. Here we show that phosphorylated (and thus activated) p38 and MKP-1 are expressed at basal levels in untreated E14 rat VM NPCs (nestin, DCX, GFAP and DAT-positive cells) following proliferation as well as in their differentiated progeny (DCX, DAT, GFAP and βIII-tubulin) in vitro. Challenge with 6-OHDA or IL-1β changed the expression of endogenous phospho-p38 and MKP-1 in these cells in a time-dependent manner, and so the dynamic balance in expression may mediate the detrimental effects of neurotoxicity and inflammation in proliferating and differentiating NPCs. We demonstrate that there was an up-regulation in MKP-1 mRNA expression in adult rat midbrain tissue 4 days post lesion in two rat models of PD; the 6-OHDA medial forebrain bundle (MFB) model and the four-site 6-OHDA striatal lesion model. This was concomitant with a decrease in tyrosine hydroxylase (TH) mRNA expression at 4 and 10 days post-lesion in the MFB model and 10 and 28 days post-lesion in the striatal lesion model. There was no change in mRNA expression of the pro-apoptotic gene, bax and the anti-apoptotic gene, bcl-2 in the midbrain and striatum. These data suggest that the early and transient upregulation of MKP-1 mRNA in the midbrain at 4 days post-6-OHDA administration may be indicative of an attempt by dopaminergic neurons in the midbrain to protect against the neurotoxic effects of 6-OHDA at later time points. Collectively, these findings show that MKP-1 is expressed by developing and adult dopaminergic neurons in the midbrain, and can promote their morphological development. MKP-1 also exerts neuroprotective effects against dopaminergic neurotoxins in vitro, and its expression in dopaminergic neurons can be modulated by inflammatory and neurotoxic insults both in vitro and in vivo. Thus, these data contribute to the information needed to develop therapeutic strategies for protecting midbrain dopaminergic neurons in the context of PD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects in commercial cheese result in a downgrading of the final cheese and a consequential economic loss to the cheese producer. Developments of defects in cheese are often not fully understood and therefore not controllable by the producer. This research investigated the underlying factors in the development of split and secondary fermentation defect and of pinking defects in commercial Irish cheeses. Split defect in Swiss-type cheese is a common defect associated with eye formation and manifests as slits and cracks visible in the cut cheese loaf (Reinbold, 1972; Daly et al., 2010). No consensus exists as to the definitive causes of the defect and possible factors which may contribute to the defect were reviewed. Models were derived to describe the relationship between moisture, pH, and salt levels and the distance from sample location to the closest external block surface during cheese ripening. Significant gradients within the cheese blocks were observed for all measured parameters in cheeses at 7 day post/after manufacture. No significant pH gradient was found within the blocks on exit from hot-room ripening and at three months post exit from the hot-room. Moisture content reached equilibrium within the blocks between exit from hot-room and 3 months after exit from hot-room while salt and salt-to-moisture levels had not reached equilibrium within the cheese blocks even at three months after exit from hot-room ripening. A characterisation of Swiss-type cheeses produced from a seasonal milk supply was undertaken. Cheeses were sampled on two days per month of the production year, at three different times during the manufacturing day, at internal and external regions of the cheese block and at four ripening time points (7 days post manufacture, post hot-room, 14 days post hot-room and 3 months in a cold room after exit from hot-room). Compositional, biochemical and microbial indices were determined, and the results were analysed as a splitplot with a factorial arrangement of treatments (season, time of day, area) on the main plot and ripening time on the sub-plot. Season (and interactions) had a significant effect on pH and salt-in-moisture levels (SM), mean viable counts of L. helveticus, propionic acid and non-starter lactic acid bacteria, levels of primary and secondary proteolysis and cheese firmness. Levels of proteolysis increased significantly during hot-room ripening but also during cold room storage, signifying continued development of cheese ripening during cold storage (> 8°C). Rheological parameters (e.g. springiness and cohesiveness) were significantly affected by interactions between ripening and location within cheese blocks. Time of day of manufacture significantly affected mean cheese calcium levels at 7 days post manufacture and mean levels of arginine and mean viable counts of NSLAB. Cheeses produced during the middle of the production day had the best grading scores and were more consistent compared to cheeses produced early or late during day of manufacture. Cheeses with low levels of S/M and low values of resilience were associated with poor grades at 7 days post manufacture. Chesses which had high elastic index values and low values of springiness in the external areas after exit from hot-room ripening also obtained good commercial grades. Development of a pink colour defect is an intermittent defect in ripened cheese which may or may not contain an added colourant, e.g., annatto. Factors associated with the defect were reviewed. Attempts at extraction and identification of the pink discolouration were unsuccessful. The pink colour partitioned with the water insoluble protein fraction. No significant difference was observed between ripened control and defect cheese for oxygen levels and redox potential or for the results of elemental analysis. A possible relationship between starter activity and defect development was established in cheeses with added coulourant, as lower levels of residual galactose and lactose were observed in defective cheese compared to control cheese free of the defect. Swiss-type cheese without added colourant had significantly higher levels of arginine and significantly lower lactate levels. Flow cell cytometry indicated that levels of bacterial cell viability and metabolic state differed between control and defect cheeses (without added colourant). Pyrosequencing analysis of cheese samples with and without the defect detected the previously unreported bacteria in cheese, Deinococcus thermus (a potential carotenoid producer). Defective Swiss-type cheeses had elevated levels of Deinococcus thermus compared to control cheeses, however the direct cause of pink was not linked to this bacterium alone. Overall, research was undertaken on underlying factors associated with the development of specific defects in commercial cheese, but also characterised the dynamic changes in key microbial and physicochemical parameters during cheese ripening and storage. This will enable the development of processing technologies to enable seasonal manipulation of manufacture protocols to minimise compositional and biochemical variability and to reduce and inhibit the occurrence of specific quality defects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes implementations of two mobile cloud applications, file synchronisation and intensive data processing, using the Context Aware Mobile Cloud Services middleware, and the Cloud Personal Assistant. Both are part of the same mobile cloud project, actively developed and currently at the second version. We describe recent changes to the middleware, along with our experimental results of the two application models. We discuss challenges faced during the development of the middleware and their implications. The paper includes performance analysis of the CPA support for the two applications in respect to existing solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Absorption heat transformers are thermodynamic systems which are capable of recycling industrial waste heat energy by increasing its temperature. Triple stage heat transformers (TAHTs) can increase the temperature of this waste heat by up to approximately 145˚C. The principle factors influencing the thermodynamic performance of a TAHT and general points of operating optima were identified using a multivariate statistical analysis, prior to using heat exchange network modelling techniques to dissect the design of the TAHT and systematically reassemble it in order to minimise internal exergy destruction within the unit. This enabled first and second law efficiency improvements of up to 18.8% and 31.5% respectively to be achieved compared to conventional TAHT designs. The economic feasibility of such a thermodynamically optimised cycle was investigated by applying it to an oil refinery in Ireland, demonstrating that in general the capital cost of a TAHT makes it difficult to achieve acceptable rates of return. Decreasing the TAHT's capital cost may be achieved by redesigning its individual pieces of equipment and reducing their size. The potential benefits of using a bubble column absorber were therefore investigated in this thesis. An experimental bubble column was constructed and used to track the collapse of steam bubbles being absorbed into a hotter lithium bromide salt solution. Extremely high mass transfer coefficients of approximately 0.0012m/s were observed, showing significant improvements over previously investigated absorbers. Two separate models were developed, namely a combined heat and mass transfer model describing the rate of collapse of the bubbles, and a stochastic model describing the hydrodynamic motion of the collapsing vapour bubbles taking into consideration random fluctuations observed in the experimental data. Both models showed good agreement with the collected data, and demonstrated that the difference between the solution's temperature and its boiling temperature is the primary factor influencing the absorber's performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amygdala is a limbic structure that is involved in many of our emotions and processing of these emotions such as fear, anger and pleasure. Conditions such as anxiety, autism, and also epilepsy, have been linked to abnormal functioning of the amygdala, owing to improper neurodevelopment or damage. This thesis investigated the cellular and molecular changes in the amygdala in models of temporal lobe epilepsy (TLE) and maternal immune activation (MIA). The kainic acid (KA) model of temporal lobe epilepsy (TLE) was used to induce Ammon’s-horn sclerosis (AHS) and to investigate behavioural and cytoarchitectural changes that occur in the amygdala related to Neuropeptide Y1 receptor expression. Results showed that KA-injected animals showed increased anxiety-like behaviours and displayed histopathological hallmarks of AHS including CA1 ablation, granule cell dispersion, volume reduction and astrogliosis. Amygdalar volume and neuronal loss was observed in the ipsilateral nuclei which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsi- and contralateral granule cell layer of the dentate gyrus and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. The results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and tight regulation and appropriate control of GABA is vital for neurochemical homeostasis. GABA transporter-1 (GAT-1) is abundantly expressed by neurones and astrocytes and plays a key role in GABA reuptake and regulation. Imbalance in GABA homeostasis has been implicated in epilepsy with GAT-1 being an attractive pharmacological target. Electron microscopy was used to examine the distribution, expression and morphology of GAT-1 expressing structures in the amygdala of the TLE model. Results suggest that GAT-1 was preferentially expressed on putative axon terminals over astrocytic processes in this TLE model. Myelin integrity was examined and results suggested that in the TLE model myelinated fibres were damaged in comparison to controls. Synaptic morphology was studied and results suggested that asymmetric (excitatory) synapses occurred more frequently than symmetric (inhibitory) synapses in the TLE model in comparison to controls. This study illustrated that the amygdala undergoes ultrastructural alterations in this TLE model. Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism, schizophrenia and also epilepsy. MIA was induced at a critical window of amygdalar development at E12 using bacterial mimetic lipopolysaccharide (LPS). Results showed that MIA activates cytokine, toll-like receptor and chemokine expression in the fetal brain that is prolonged in the postnatal amygdala. Inflammation elicited by MIA may prime the fetal brain for alterations seen in the glial environment and this in turn have deleterious effects on neuronal populations as seen in the amygdala at P14. These findings may suggest that MIA induced during amygdalar development may predispose offspring to amygdalar related disorders such as heightened anxiety, fear impairment and also neurodevelopmental disorders.