4 resultados para Cytoplasmic organelles

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of Lactococcus lactis subsp. cremoris NCDO 712 to low water activity (aw) was investigated, both in relation to growth following moderate reductions in the aw and in terms of survival following substantial reduction of the aw with NaCI. Lc.lactis NCDO 712 was capable of growth in the presence of ≤ 4% w/v NaCI and concentrations in excess of 4% w/v were lethal to the cells. The presence of magnesium ions significantly increased the resistance of NCDO 712 to challenge with NaCI and also to challenge with high temperature or low pH. Survival of Lc.lactis NCDO 712 exposed to high NaCI concentrations was growth phase dependent and cells were most sensitive in the early exponential phase of growth. Pre-exposure to 3% w/v NaCI induced limited protection against subsequent challenge with higher NaCI concentrations. The induction was inhibited by chloramphenicol and even when induced, the response did not protect against NaCI concentrations> 10% w/v. When growing at low aw, potassium was accumulated by Lc. lactis NCDO 712 growing at low aw, if the aw was reduced by glucose or fructose, but not by NaCI. Reducing the potassium concentration of chemically defined medium from 20 to 0.5 mM) produced a substantial reduction in the growth rate, if the aw was reduced with NaCI, but not with glucose or fructose. The reduction of the growth rate correlated strongly with a reduction in the cytoplasmic potassium concentration and in cell volume. Addition of the compatible solute glycine betaine, partially reversed the inhibition of growth rate and partially restored the cell volume. The potassium transport system was characterised in cells grown in medium at both high and low aw. It appeared that a single system was present, which was induced approximately two-fold by growth at low aw. Potassium transport was assayed in vitro using cells depleted of potassium; the assay was competitively inhibited by Na+ and by the other monovalent cations NH4+, Li+, and Cs+. There was a strong correlation between the ability of strains of Lc. lactis subsp. lactis and subsp. cremoris to grow at low aw and their ability to accumulate the compatible solute glycine betaine. The Lc. lactis subsp. cremoris strains incapable of growth at NaCI concentrations> 2% w/v did not accumulate glycine betaine when growing at low aw, whereas strains capable of growth at NaCI concentrations up to 4% w/v did. A mutant, extremely sensitive to low aw was isolated from the parent strain Lc. lactis subsp. cremoris MG 1363, a plasmid free derivative of NCDO 712. The parent strain tolerated up to 4% w/v NaCI and actively accumulated glycine betaine when challenged at low aw. The mutant had lost the ability to accumulate glycine betaine and was incapable of growth at NaCI concentrations >2% w/v or the equivalent concentration of glucose. As no other compatible solute seemed capable of substitution for glycine betaine, the data suggest that the traditional; phenotypic speciation of strains on the basis of tolerance to 4% w/v NaCI can be explained as possession or lack of a glycine betaine transport system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The observations of Hooke (1665), Schleiden & Schwann (1839) and Virchow (1855) led to the identification of the cell as the basic structural unit of living material. In the intervening years, it has been firmly established that the chemical processes which underlie the proper functioning, development and reproduction of the organism are cellular activities. The development of the electron microscope has enabled cell structure to be studied in detail. A picture of the cell as an entity with a complex and highly organised internal structure has emerged from the work of Palade, Porter, Fernandez-Moran and many others. Although cells from different tissues and organisms differ in aspects of their structure and consequently in function, they have several features in common. A retentive membrane encloses a number of cell constituents, which include membrane-enclosed subcellular structures known as organelles. The cells of most tissues also contain a reticulum or system of branching tubules. The interplay of the biochemical activities of these structures enables the cell to function. Almost thirty years ago, Claude, Palade, Schneider, Hogeboom, de Duve and others set out to analytically fractionate the subcellular components obtained after the fragmentation of liver cells. This approach has become known as subcellular fractionation, and signalled a major conceptual breakthrough in biochemistry (reviewed by de Duve, 1964, 1967, 1971). The significance of this breakthrough has been underlined by the award of the 1974 Nobel Prize in Medicine to de Duve, Palade and Claude. This thesis is concerned with the application of subcellular fractionation techniques to the separation and characterisation of the membrane systems of the rabbit skeletal muscle cell.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flagella confer upon bacteria the ability to move and are therefore organelles of significant bacteriological importance. The innate immune system has evolved to recognise flagellin, (the major protein component of the bacterial flagellar filament). Flagellate microbes can potentially stimulate the immune systems of mammals, and thus have significant immunomodulatory potential. The flagellum-biogenesis genotype and phenotype of Lactobacillus ruminis, an autochthonous intestinal commensal, was studied. The flagellum-biogenesis genotypes of motile enteric Eubacterium and Roseburia species were also investigated. Flagellin proteins were recovered from these commensal species, their amino-termini were sequenced and the proteins were found to be pro-inflammatory, as assessed by measurement of interleukin-8 (IL-8) secretion from human intestinal epithelial cell lines. For L. ruminis, this IL-8 secretion required signalling through Toll Like Receptor 5. A model for the regulation of flagellum-biogenesis in L. ruminis was inferred from transcriptomics data and bioinformatics analyses. Motility gene expression in this species may be under the control of a novel regulator, LRC_15730. Potential promoters for genes encoding flagellin proteins in the Eubacterium and Roseburia genomes analysed were inferred in silico. Relative abundances of the target Eubacterium and Roseburia species in the intestinal microbiota of 25 elderly individuals were determined. These species were found to be variably abundant in these individuals. Motility genes from these species were variably detected in the shotgun metagenome databases generated by the ELDERMET project. This suggested that a greater depth of sequencing, or improved evenness of sequencing, would be required to capture the full diversity of microbial functions for specific target or low abundance species in microbial communities by metagenomics. In summary, this thesis used a functional genomics approach to describe flagellum-mediated motility in selected Gram-positive commensal bacteria. The regulation of flagellum biosynthesis in these species, and the consequences of flagella expression from a host-interaction perspective were also considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a complex skeletal disorder characterized by compromised bone strength. Variation in bone mineral density (BMD) is a contributing factor. The aim of this research as to select informative single nucleotide polymorphisms (SNPs) in potential candidate genes from loci suggestively linked to BMD variation for fine mapping. The gene regulated by oestrogen in breast cancer 1 (GREB1), located at 2p25.1, was selected. GREB1 transcription is initiated early in the oestrogen receptor alpha regulated pathway. There was significant association between GREB1_03 and BMD variation at the lumbar spine and femoral neck (FN) in the discovery cohort. Significant association was observed between GREB1_04 and FN BMD in the replication cohort. The development and differentiation enhancing factor 2, the integrin cytoplasmic domain associated protein 1 and A-disintegrin and metalloprotease 17 were selected due to their respective roles in cell mobility and adhesion. There was no linkage or association observed between the Chr2 cluster SNPs and BMD. Two factors in bone remodelling are the attraction of bone cell precursors and endocrine regulation of the process, primarily through the action of parathyroid hormone (PTH). The C-C chemokine receptor type 3 (CCR3) encodes a CC chemokine receptor expressed in osteoclast precursors. The PTH receptor type 1 (PTHR1) encodes a G-protein coupled receptor for PTH. Association was observed between CCR3 haplotypes and BMD variation at the FN. There was no linkage or association observed between PTHR1 SNPs and BMD variation. Population genetic studies with complex phenotypes endeavour to elucidate the traits genetic architecture. This study presents evidence of association between GREB1 and BMD variation and as such, introduces GREB1 as a novel gene target for osteoporosis genetics studies. It affirms that common genomic variants in PTHR1 are not associated with BMD variation in Caucasians and supports the evidence that CCR3 may be contributing to BMD variation