9 resultados para Current awareness services
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This paper presents our efforts to bridge the gap between mobile context awareness, and mobile cloud services, using the Cloud Personal Assistant (CPA). The CPA is a part of the Context Aware Mobile Cloud Services (CAMCS) middleware, which we continue to develop. Specifically, we discuss the development and evaluation of the Context Processor component of this middleware. This component collects context data from the mobile devices of users, which is then provided to the CPA of each user, for use with mobile cloud services. We discuss the architecture and implementation of the Context Processor, followed by the evaluation. We introduce context profiles for the CPA, which influence its operation by using different context types. As part of the evaluation, we present two experimental context-aware mobile cloud services to illustrate how the CPA works with user context, and related context profiles, to complete tasks for the user.
Resumo:
The aim of this research, which focused on the Irish adult population, was to generate information for policymakers by applying statistical analyses and current technologies to oral health administrative and survey databases. Objectives included identifying socio-demographic influences on oral health and utilisation of dental services, comparing epidemiologically-estimated dental treatment need with treatment provided, and investigating the potential of a dental administrative database to provide information on utilisation of services and the volume and types of treatment provided over time. Information was extracted from the claims databases for the Dental Treatment Benefit Scheme (DTBS) for employed adults and the Dental Treatment Services Scheme (DTSS) for less-well-off adults, the National Surveys of Adult Oral Health, and the 2007 Survey of Lifestyle Attitudes and Nutrition in Ireland. Factors associated with utilisation and retention of natural teeth were analysed using count data models and logistic regression. The chi-square test and the student’s t-test were used to compare epidemiologically-estimated need in a representative sample of adults with treatment provided. Differences were found in dental care utilisation and tooth retention by Socio-Economic Status. An analysis of the five-year utilisation behaviour of a 2003 cohort of DTBS dental attendees revealed that age and being female were positively associated with visiting annually and number of treatments. Number of adults using the DTBS increased, and mean number of treatments per patient decreased, between 1997 and 2008. As a percentage of overall treatments, restorations, dentures, and extractions decreased, while prophylaxis increased. Differences were found between epidemiologically-estimated treatment need and treatment provided for those using the DTBS and DTSS. This research confirms the utility of survey and administrative data to generate knowledge for policymakers. Public administrative databases have not been designed for research purposes, but they have the potential to provide a wealth of knowledge on treatments provided and utilisation patterns.
Resumo:
This paper introduces the original concept of a cloud personal assistant, a cloud service that manages the access of mobile clients to cloud services. The cloud personal assistant works in the cloud on behalf of its owner: it discovers services, invokes them, stores the results and history, and delivers the results to the mobile user immediately or when the user requests them. Preliminary experimental results that demonstrate the concept are included.
Resumo:
The increasing penetration rate of feature rich mobile devices such as smartphones and tablets in the global population has resulted in a large number of applications and services being created or modified to support mobile devices. Mobile cloud computing is a proposed paradigm to address the resource scarcity of mobile devices in the face of demand for more computing intensive tasks. Several approaches have been proposed to confront the challenges of mobile cloud computing, but none has used the user experience as the primary focus point. In this paper we evaluate these approaches in respect of the user experience, propose what future research directions in this area require to provide for this crucial aspect, and introduce our own solution.
Resumo:
The aging population in many countries brings into focus rising healthcare costs and pressure on conventional healthcare services. Pervasive healthcare has emerged as a viable solution capable of providing a technology-driven approach to alleviate such problems by allowing healthcare to move from the hospital-centred care to self-care, mobile care, and at-home care. The state-of-the-art studies in this field, however, lack a systematic approach for providing comprehensive pervasive healthcare solutions from data collection to data interpretation and from data analysis to data delivery. In this thesis we introduce a Context-aware Real-time Assistant (CARA) architecture that integrates novel approaches with state-of-the-art technology solutions to provide a full-scale pervasive healthcare solution with the emphasis on context awareness to help maintaining the well-being of elderly people. CARA collects information about and around the individual in a home environment, and enables accurately recognition and continuously monitoring activities of daily living. It employs an innovative reasoning engine to provide accurate real-time interpretation of the context and current situation assessment. Being mindful of the use of the system for sensitive personal applications, CARA includes several mechanisms to make the sophisticated intelligent components as transparent and accountable as possible, it also includes a novel cloud-based component for more effective data analysis. To deliver the automated real-time services, CARA supports interactive video and medical sensor based remote consultation. Our proposal has been validated in three application domains that are rich in pervasive contexts and real-time scenarios: (i) Mobile-based Activity Recognition, (ii) Intelligent Healthcare Decision Support Systems and (iii) Home-based Remote Monitoring Systems.
Resumo:
Cloud services provide its users with flexible resource provisioning. But in the current market, a user has to choose from a limited set of configurations at a fixed price. This paper presents an autonomous negotiation system termed CloudNeg for negotiating cloud services. CloudNeg provides buyers and sellers of cloud services with autonomous agents to negotiate on the specifications of a cloud instance, including price, on their behalf. These agents elicit their buyers’ time preferences and use them in negotiations. Further, this paper presents two artifacts: a negotiation algorithm and a prototype which together form CloudNeg.
Resumo:
The mobile cloud computing paradigm can offer relevant and useful services to the users of smart mobile devices. Such public services already exist on the web and in cloud deployments, by implementing common web service standards. However, these services are described by mark-up languages, such as XML, that cannot be comprehended by non-specialists. Furthermore, the lack of common interfaces for related services makes discovery and consumption difficult for both users and software. The problem of service description, discovery, and consumption for the mobile cloud must be addressed to allow users to benefit from these services on mobile devices. This paper introduces our work on a mobile cloud service discovery solution, which is utilised by our mobile cloud middleware, Context Aware Mobile Cloud Services (CAMCS). The aim of our approach is to remove complex mark-up languages from the description and discovery process. By means of the Cloud Personal Assistant (CPA) assigned to each user of CAMCS, relevant mobile cloud services can be discovered and consumed easily by the end user from the mobile device. We present the discovery process, the architecture of our own service registry, and service description structure. CAMCS allows services to be used from the mobile device through a user's CPA, by means of user defined tasks. We present the task model of the CPA enabled by our solution, including automatic tasks, which can perform work for the user without an explicit request.
Resumo:
Dynamically reconfigurable time-division multiplexing (TDM) dense wavelength division multiplexing (DWDM) long-reach passive optical networks (PONs) can support the reduction of nodes and network interfaces by enabling a fully meshed flat optical core. In this paper we demonstrate the flexibility of the TDM-DWDM PON architecture, which can enable the convergence of multiple service types on a single physical layer. Heterogeneous services and modulation formats, i.e. residential 10G PON channels, business 100G dedicated channel and wireless fronthaul, are demonstrated co-existing on the same long reach TDM-DWDM PON system, with up to 100km reach, 512 users and emulated system load of 40 channels, employing amplifier nodes with either erbium doped fiber amplifiers (EDFAs) or semiconductor optical amplifiers (SOAs). For the first time end-to-end software defined networking (SDN) management of the access and core network elements is also implemented and integrated with the PON physical layer in order to demonstrate two service use cases: a fast protection mechanism with end-to-end service restoration in the case of a primary link failure; and dynamic wavelength allocation (DWA) in response to an increased traffic demand.
Resumo:
Mobile and wireless networks have long exploited mobility predictions, focused on predicting the future location of given users, to perform more efficient network resource management. In this paper, we present a new approach in which we provide predictions as a probability distribution of the likelihood of moving to a set of future locations. This approach provides wireless services a greater amount of knowledge and enables them to perform more effectively. We present a framework for the evaluation of this new type of predictor, and develop 2 new predictors, HEM and G-Stat. We evaluate our predictors accuracy in predicting future cells for mobile users, using two large geolocation data sets, from MDC [11], [12] and Crawdad [13]. We show that our predictors can successfully predict with as low as an average 2.2% inaccuracy in certain scenarios.