6 resultados para Cu doped gold nanoparticles modified glassy carbon electrode
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of ∼0.9 nm and a stability of ∼85 days. V2 O5 nanotubes (VOx-NTs) with lengths of ∼2 μm and internal hollow diameters of 20-100 nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of ∼ 4 × 1 0- 3 mol dm-3. The interchange reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane.
Resumo:
Gold nanoparticles (Au NPs) with diameters ranging between 5-60 nm have been synthesised in water, and further stabilized with polyethylene glycol-based thiol polymers (mPEG-SH). Successful PEGylation of the Au NPs was confirmed by Dynamic Light scattering (DLS) and Zeta potential measurements. PEG coating of the Au NPs is the key of their colloidal stabilty, and its successful applications. Catalytic efficiency testing of the PEG-AuNPs were carried out on homocoupling of boronic acid. PEG-Au NPs with AuNps diameter < 30 nm were useful as catalyst in water. Finally, the PEG-Au NPs were also shown to be stable in biological fluid and not cytotoxic on B16.F10 cell line, making them attractive for further studies.
Resumo:
Gold nanoparticles (Au NPs) with diameters ranging between 15 and 150 nm have been synthesised in water. 15 and 30 nm Au NPs were obtained by the Turkevich and Frens method using sodium citrate as both a reducing and stabilising agent at high temperature (Au NPs-citrate), while 60, 90 and 150 nm Au NPs were formed using hydroxylamine-o-sulfonic acid (HOS) as a reducing agent for HAuCl4 at room temperature. This new method using HOS is an extension of the approaches previously reported for producing Au NPs with mean diameters above 40 nm by direct reduction. Functionalised polyethylene glycol-based thiol polymers were used to stabilise the pre-synthesised Au NPs. The nanoparticles obtained were characterised using uv-visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Further bioconjugation on 15, 30 and 90 nm PEGylated Au NPs were performed by grafting Bovine Serum Albumin, Transferrin and Apolipoprotein E (ApoE).
Resumo:
The development of economical heterogeneous catalysts for the activation of methane is a major challenge for the chemical industry. Screening potential candidates becomes more feasible using rational catalyst design to understand the activity of potential catalysts for CH4 activation. The focus of the present paper is the use of density functional theory to examine and elucidate the properties of doped CeO2. We dope with Cu and Zn transition metals having variable oxidation state (Cu), and a single oxidation state (Zn), and study the activation of methane. Zn is a divalent dopant and Cu can have a +1 or +2 oxidation state. Both Cu and Zn dopants have an oxidation state of +2 after incorporation into the CeO2 (111) surface; however a Hubbard +U correction (+U = 7) on the Cu 3d states is required to maintain this oxidation state when the surface interacts with adsorbed species. Dissociation of methane is found to occur locally at the dopant cations, and is thermodynamically and kinetically more favorable on Zn-doped CeO2 than Cu-doped CeO2. The origins of this lie with the Zn(II) dopant moving towards a square pyramidal geometry in the sub surface layer which facilitates the formation of two-coordinated surface oxygen atoms, that are more beneficial for methane activation on a reducible oxide surface. These findings can aid in rational experimental catalyst design for further exploration in methane activation processes.
Resumo:
Prostate cancer is one of the most common cancers diagnosed in men. Whilst treatments for early-stage disease are largely effective, current therapies for metastatic prostate cancer, particularly for bone metastasis, offer only a few months increased lifespan at best. Hence new treatments are urgently required. Small interfering RNA (siRNA) has been investigated for the treatment of prostate cancer where it can ‘silence’ specific cancer-related genes. However the clinical application of siRNA-based gene therapy is limited due to the absence of an optimised gene delivery vector. The optimisation of such gene delivery vectors is routinely undertaken in vitro using 2D cell culture on plastic dishes which does not accurately simulate the in vivo bone cancer metastasis microenvironment. The goal of this thesis was to assess the potential of two different targeted delivery vectors (gold or modified β-cyclodextrin derivatives) to facilitate siRNA receptor-mediated uptake into prostate cancer cells. Furthermore, this project aimed to develop a more physiologically relevant 3D in vitro cell culture model, to mimic prostate cancer bone metastasis, which is suitable for evaluating the delivery of nanoparticulate gene therapeutics. In the first instance, cationic derivatives of gold and β-cyclodextrin were synthesized to complex anionic siRNA. The delivery vectors were targeted to prostate cancer cells using the anisamide ligand which has high affinity for the sigma receptor that is overexpressed by prostate cancer cells. The gold nanoparticle demonstrated high levels of uptake into prostate cancer PC3 cells and efficient gene silencing when transfection was performed in serum-free media. However, due to the absence of a poly(ethylene glycol) (PEG) stabilising group, the formulation was unsuitable for use in serum-containing conditions. Conversely, the modified β-cyclodextrin formulation demonstrated enhanced stability in the presence of serum due to the inclusion of a PEG chain onto which the anisamide ligand was conjugated. However, the maximum level of gene silencing efficacy from three different prostate cancer cell lines (DU145, VCaP and PC3 cells) was 30 %, suggesting that further optimisation of the formulation would be required prior to application in vivo. In order to develop a more physiologically-relevant in vitro model of prostate cancer bone metastasis, prostate cancer cells (PC3 and LNCaP cells) were cultured in 3D on collagenbased scaffolds engineered to mimic the bone microenvironment. While the model was suitable for assessing nanoparticle-mediated gene knockdown, prostate cancer cells demonstrated a phenotype with lower invasive potential when grown on the scaffolds relative to standard 2D cell culture. Hence, prostate cancer cells (PC3 and LNCaP cells) were subsequently co-cultured with bone osteoblast cells (hFOB 1.19 cells) to enhance the physiological relevance of the model. Co-cultures secreted elevated levels of the MMP9 enzyme, a marker of prostate cancer metastasis, relative to prostate cancer cell monocultures (2D and 3D) indicating enhanced physiological relevance of the model. Furthermore, the coculture model proved suitable for investigating nanoparticle-mediated gene silencing. In conclusion, the work outlined in this thesis identified two different sigma receptor-targeted gene delivery vectors with potential for the treatment of prostate cancer. In addition, a more physiologically relevant model of prostate cancer bone metastasis was developed with the capacity to help optimise gene delivery vectors for the treatment of prostate cancer.
Resumo:
The majority of electrode materials in batteries and related electrochemical energy storage devices are fashioned into slurries via the addition of a conductive additive and a binder. However, aggregation of smaller diameter nanoparticles in current generation electrode compositions can result in non-homogeneous active materials. Inconsistent slurry formulation may lead to inconsistent electrical conductivity throughout the material, local variations in electrochemical response, and the overall cell performance. Here we demonstrate the hydrothermal preparation of Ag nanoparticle (NP) decorated α-AgVO3 nanowires (NWs) and their conversion to tunnel structured β-AgVO3 NWs by annealing to form a uniform blend of intercalation materials that are well connected electrically. The synthesis of nanostructures with chemically bound conductive nanoparticles is an elegant means to overcome the intrinsic issues associated with electrode slurry production, as wire-to-wire conductive pathways are formed within the overall electrode active mass of NWs. The conversion from α-AgVO3 to β-AgVO3 is explained in detail through a comprehensive structural characterization. Meticulous EELS analysis of β-AgVO3 NWs offers insight into the true β-AgVO3 structure and how the annealing process facilitates a higher surface coverage of Ag NPs directly from ionic Ag content within the α-AgVO3 NWs. Variations in vanadium oxidation state across the surface of the nanowires indicate that the β-AgVO3 NWs have a core–shell oxidation state structure, and that the vanadium oxidation state under the Ag NP confirms a chemically bound NP from reduction of diffused ionic silver from the α-AgVO3 NWs core material. Electrochemical comparison of α-AgVO3 and β-AgVO3 NWs confirms that β-AgVO3 offers improved electrochemical performance. An ex situ structural characterization of β-AgVO3 NWs after the first galvanostatic discharge and charge offers new insight into the Li+ reaction mechanism for β-AgVO3. Ag+ between the van der Waals layers of the vanadium oxide is reduced during discharge and deposited as metallic Ag, the vacant sites are then occupied by Li+.