3 resultados para Covering Number
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Evaluation of temperature distribution in cold rooms is an important consideration in the design of food storage solutions. Two common approaches used in both industry and academia to address this question are the deployment of wireless sensors, and modelling with Computational Fluid Dynamics (CFD). However, for a realworld evaluation of temperature distribution in a cold room, both approaches have their limitations. For wireless sensors, it is economically unfeasible to carry out large-scale deployment (to obtain a high resolution of temperature distribution); while with CFD modelling, it is usually not accurate enough to get a reliable result. In this paper, we propose a model-based framework which combines the wireless sensors technique with CFD modelling technique together to achieve a satisfactory trade-off between minimum number of wireless sensors and the accuracy of temperature profile in cold rooms. A case study is presented to demonstrate the usability of the framework.
Resumo:
This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
Resumo:
The child is the most precious asset and the focal point of development for any country. However, unless children are brought up in a stimulating and conducive environment getting the best possible care and protection, their physical, mental, emotional and social development is susceptible to permanent damage. Ethiopia, being one of the least developed countries of the world due to interrelated and complex socio-economic factors including man-made and natural calamities, a large portion of our population - especially children - are victimized by social evils like famine, disease, poverty, mass displacement, lack of education and family instability. Owing to the fact that children are the most vulnerable group among the whole society and also because they constitute half of the population it is evident that a considerable number of Ethiopian children are living under difficult circumstances. Therefore, as in a number of other third world countries there are many poor, displaced, unaccompanied and orphaned children in our country. A considerable proportion of these children work on the street with some even totally living on the street without any adult care and protection. These children are forced to the streets in their tight for survival. They supplement their parents meagre income or support themselves with the small incomes they earn doing menial jobs. In doing this, street children face the danger of getting into accidents and violence, they get exploited and abused, many are forced to drop out of school or never get the chance to be enroled at all and some drift into begging or petty crime. This study is undertaken mainly for updating the findings of previous studies, monitoring changing trends, examining new facts of the problem and getting a better understanding of the phenomenon in the country by covering at least some of the major centres where the problem is acute. Thus, the outcome of this research can be useful in the formation of the social welfare programme of the country. Finally, in recognition of the urgency of the problem and the limited resources available, the Ministry of Labour and Social Affairs expresses appreciation to all agencies engaged in the rehabilitation of street children and prevention of the problem. The Ministry also calls for more co-operation and support between concerned governmental and non-governmental organizations in their efforts for improving the situation of street children and in curbing the overwhelming nature of the problem.