4 resultados para Cotton manufacture.

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this PhD study, mathematical modelling and optimisation of granola production has been carried out. Granola is an aggregated food product used in breakfast cereals and cereal bars. It is a baked crispy food product typically incorporating oats, other cereals and nuts bound together with a binder, such as honey, water and oil, to form a structured unit aggregate. In this work, the design and operation of two parallel processes to produce aggregate granola products were incorporated: i) a high shear mixing granulation stage (in a designated granulator) followed by drying/toasting in an oven. ii) a continuous fluidised bed followed by drying/toasting in an oven. In addition, the particle breakage of granola during pneumatic conveying produced by both a high shear granulator (HSG) and fluidised bed granulator (FBG) process were examined. Products were pneumatically conveyed in a purpose built conveying rig designed to mimic product conveying and packaging. Three different conveying rig configurations were employed; a straight pipe, a rig consisting two 45° bends and one with 90° bend. It was observed that the least amount of breakage occurred in the straight pipe while the most breakage occurred at 90° bend pipe. Moreover, lower levels of breakage were observed in two 45° bend pipe than the 90° bend vi pipe configuration. In general, increasing the impact angle increases the degree of breakage. Additionally for the granules produced in the HSG, those produced at 300 rpm have the lowest breakage rates while the granules produced at 150 rpm have the highest breakage rates. This effect clearly the importance of shear history (during granule production) on breakage rates during subsequent processing. In terms of the FBG there was no single operating parameter that was deemed to have a significant effect on breakage during subsequent conveying. A population balance model was developed to analyse the particle breakage occurring during pneumatic conveying. The population balance equations that govern this breakage process are solved using discretization. The Markov chain method was used for the solution of PBEs for this process. This study found that increasing the air velocity (by increasing the air pressure to the rig), results in increased breakage among granola aggregates. Furthermore, the analysis carried out in this work provides that a greater degree of breakage of granola aggregates occur in line with an increase in bend angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the inter-related attempts to secure the legitimation of risk and democracy with regard to Bt cotton, a genetically modified crop, in the state of Andhra Pradesh in India. The research included nine months of ethnographic fieldwork, extensive library and newspaper research, as well as university attendance in India, undertaken between June, 2010 and March, 2011. This comparative study (involving organic, NPM and Bt cotton cultivation) was conducted in three villages in Telangana, a region which was granted secession from Andhra Pradesh in July, 2013, and in Hyderabad, the state capital. Andhra Pradesh is renowned for its agrarian crisis and farmer suicides, as well as for the conflict which Bt cotton represents. This study adopts the categories of legitimation developed by Van Leeuwen (2007; 2008) in order to explore the theory of risk society (Beck, 1992; 1994; 1999; 2009), and the Habermasian (1996: 356-366) core-periphery model as means of theoretically analysing democratic legitimacy. The legitimation of risk and democracy in relation to Bt cotton refers to normative views on the way in which power should be exercised with regard to risk differentiation, construction and definition. The analysis finds that the more legitimate the exercise of power, the lower the exposure to risk as a concern for the collective. This also has consequences for the way in which resources are distributed, knowledge constructed, and democratic praxis institutionalised as a concern for social and epistemic justice. The thesis argues that the struggle to legitimate risk and democracy has implications not only for the constitution of the new state of Telangana and the region’s development, but also for the emergence of global society and the future development of humanity as a whole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infant milk formula (IMF) is fortified milk with composition based on the nutrient content in human mother's milk, 0 to 6 months postpartum. Extensive medical and clinical research has led to advances in the nutritional quality of infant formula; however, relatively few studies have focused on interactions between nutrients and the manufacturing process. The objective of this research was to investigate the impact of composition and processing parameters on physical behaviour of high dry matter (DM) IMF systems with a view to designing more sustainable manufacturing processes. The study showed that commercial IMF, with similar compositions, manufactured by different processes, had markedly different physical properties in dehydrated or reconstituted state. Commercial products made with hydrolysed protein were more heat stable compared to products made with intact protein, however, emulsion quality was compromised. Heat-induced denaturation of whey proteins resulted in increased viscosity of wet-mixes, an effect that was dependant on both whey concentration and interactions with lactose and caseins. Expanding on fundamental laboratory studies, a novel high velocity steam injection process was developed whereby high DM (60%) wet-mixes with lower denaturation/viscosity compared to conventional processes could be achieved; powders produced using this process were of similar quality to those manufactured conventionally. Hydrolysed proteins were also shown to be an effective way of reducing viscosity in heat-treated high DM wet-mixes. In particular, using a whey protein concentrate whereby β-Lactoglobulin was selectively hydrolysed, i.e., α-Lactalbumin remained intact, reduced viscosity of wet-mixes during processing while still providing good emulsification. The thesis provides new insights into interactions between nutrients and/or processing which influence physical stability of IMF both in concentrated liquid and powdered form. The outcomes of the work have applications in such areas as; increasing the DM content of spray drier feeds in order to save energy, and, controlling final powder quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Computer-Aided-Design (CAD) and Computer-Aided-Manufacture (CAM) has been developed to fabricate fixed dental restorations accurately, faster and improve cost effectiveness of manufacture when compared to the conventional method. Two main methods exist in dental CAD/CAM technology: the subtractive and additive methods. While fitting accuracy of both methods has been explored, no study yet has compared the fabricated restoration (CAM output) to its CAD in terms of accuracy. The aim of this present study was to compare the output of various dental CAM routes to a sole initial CAD and establish the accuracy of fabrication. The internal fit of the various CAM routes were also investigated. The null hypotheses tested were: 1) no significant differences observed between the CAM output to the CAD and 2) no significant differences observed between the various CAM routes. Methods: An aluminium master model of a standard premolar preparation was scanned with a contact dental scanner (Incise, Renishaw, UK). A single CAD was created on the scanned master model (InciseCAD software, V2.5.0.140, UK). Twenty copings were then fabricated by sending the single CAD to a multitude of CAM routes. The copings were grouped (n=5) as: Laser sintered CoCrMo (LS), 5-axis milled CoCrMo (MCoCrMo), 3-axis milled zirconia (ZAx3) and 4-axis milled zirconia (ZAx4). All copings were micro-CT scanned (Phoenix X-Ray, Nanotom-S, Germany, power: 155kV, current: 60µA, 3600 projections) to produce 3-Dimensional (3D) models. A novel methodology was created to superimpose the micro-CT scans with the CAD (GOM Inspect software, V7.5SR2, Germany) to indicate inaccuracies in manufacturing. The accuracy in terms of coping volume was explored. The distances from the surfaces of the micro-CT 3D models to the surfaces of the CAD model (CAD Deviation) were investigated after creating surface colour deviation maps. Localised digital sections of the deviations (Occlusal, Axial and Cervical) and selected focussed areas were then quantitatively measured using software (GOM Inspect software, Germany). A novel methodology was also explored to digitally align (Rhino software, V5, USA) the micro-CT scans with the master model to investigate internal fit. Fifty digital cross sections of the aligned scans were created. Point-to-point distances were measured at 5 levels at each cross section. The five levels were: Vertical Marginal Fit (VF), Absolute Marginal Fit (AM), Axio-margin Fit (AMF), Axial Fit (AF) and Occlusal Fit (OF). Results: The results of the volume measurement were summarised as: VM-CoCrMo (62.8mm3 ) > VZax3 (59.4mm3 ) > VCAD (57mm3 ) > VZax4 (56.1mm3 ) > VLS (52.5mm3 ) and were all significantly different (p presented as areas with different colour. No significant differences were observed at the internal aspect of the cervical aspect between all groups of copings. Significant differences (p< M-CoCrMo Internal Occlusal, Internal Axial and External Axial 2 ZAx3 > ZAx4 External Occlusal, External Cervical 3 ZAx3 < ZAx4 Internal Occlusal 4 M-CoCrMo > ZAx4 Internal Occlusal and Internal Axial The mean values of AMF and AF were significantly (p M-CoCrMo and CAD > ZAx4. Only VF of M-CoCrMo was comparable with the CAD Internal Fit. All VF and AM values were within the clinically acceptable fit (120µm). Conclusion: The investigated CAM methods reproduced the CAD accurately at the internal cervical aspect of the copings. However, localised deviations at axial and occlusal aspects of the copings may suggest the need for modifications in these areas prior to fitting and veneering with porcelain. The CAM groups evaluated also showed different levels of Internal Fit thus rejecting the null hypotheses. The novel non-destructive methodologies for CAD/CAM accuracy and internal fit testing presented in this thesis may be a useful evaluation tool for similar applications.