3 resultados para Correction of acidity

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is an autosomal recessive monogenic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene with the ΔF508 mutation accounting for approximately 70% of all CF cases worldwide. This thesis investigates whether existing zinc finger nucleases designed in this lab and CRISPR/gRNAs designed in this thesis can mediate efficient homology-directed repair (HDR) with appropriate donor repair plasmids to correct CF-causing mutations in a CF cell line. Firstly, the most common mutation, ΔF508, was corrected using a pair of existing ZFNs, which cleave in intron 9, and the donor repair plasmid pITR-donor-XC, which contains the correct CTT sequence and two unique restriction sites. HDR was initially determined to be <1% but further analysis by next generation sequencing (NGS) revealed HDR occurred at a level of 2%. This relatively low level of repair was determined to be a consequence of distance from the cut site to the mutation and so rather than designing a new pair of ZFNs, the position of the existing intron 9 ZFNs was exploited and attempts made to correct >80% of CF-causing mutations. The ZFN cut site was used as the site for HDR of a mini-gene construct comprising exons 10-24 from CFTR cDNA (with appropriate splice acceptor and poly A sites) to allow production of full length corrected CFTR mRNA. Finally, the ability to cleave closer to the mutation and mediate repair of CFTR using the latest gene editing tool CRISPR/Cas9 was explored. Two CRISPR gRNAs were tested; CRISPR ex10 was shown to cleave at an efficiency of 15% and CRISPR in9 cleaved at 3%. Both CRISPR gRNAs mediated HDR with appropriate donor plasmids at a rate of ~1% as determined by NGS. This is the first evidence of CRISPR induced HDR in CF cell lines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thesis was prompted by a simple clinical observation. Seriously ill children returning from Barretstown Holiday Camp appeared changed. Barretstown ‘magic’ confuses the issue but indicates real and clinically evident transformations. The project sought to understand the experience and place it in a recognisable framework. The data was collected by interviews, observations as camp Paediatrician, memberships of the Child Advisory Committee and the Association’s criteria assessment team, participation in volunteer training and visits to international camps. The research presents evidence that the concepts of rite of passage, graceful mimesis and salutogenesis clarify operative social processes. The passage stages of separation, transition and reaggregation can be identified. Passage rites reorder personal and social upsets to fresh arrangements that facilitate change. Interviews confirm the reordering impact of achievements in play activities. These are challenging experiences closely guided by their Masters of Ceremonies – the Caras. The Cara/camper relationship is crucial and compatible with Girard’s theory of external mimesis. Visits to four camps confirm an inspirational process in contrast to a reported camp with a predetermined formative influence. Charismatic Caras/Councillors inspire playful mimesis and salutogenic transformations. Health is more than correction of pathogenic deficits and restoration of homeostasis. Salutogenic health promotes heterostasis – a desire for optimal experiences underpinned by a sense of coherence and adequate resources. Some evidence is presented that children have an improved sense of coherence after camp, which enables them to cope better with the demands of ill health. The camps enable sick children to up regulate risk taking towards more heterostatic experiences rather than down regulate their expectations. The heterostatic impulse can explain the disability paradox of good quality of life in the presence of severe disability. The salutogenic power of Barretstown can trump the pathogenic effects of childhood cancer and other serious illnesses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correctionof problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.