2 resultados para Coordination inter-articulaire

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sudden decrease of plasma stored energy and subsequent power deposition on the first wall of a tokamak due to edge localised modes (ELMs) is potentially detrimental to the success of a future fusion reactor. Understanding and control of ELMs is critical for the longevity of these devices and also to maximise their performance. The commonly accepted picture of ELMs posits a critical pressure gradient and current density in the plasma edge, above which coupled magnetohy drodynamic peeling-ballooning modes become unstable. Much analysis has been presented in recent years on the spatial and temporal evolution of the edge pressure gradient. However, the edge current density has typically been overlooked due to the difficulties in measuring this quantity. In this thesis, a novel method of current density recovery is presented, using the equilibrium solver CLISTE to reconstruct a high resolution equilibrium utilising both external magnetic and internal edge kinetic data measured on the ASDEX Upgrade tokamak. The evolution of the edge current density relative to an ELM crash is presented, showing that a resistive delay in the buildup of the current density is unlikely. An uncertainty analysis shows that the edge current density can be determined with an accuracy consistent with that of the kinetic data used. A comparison with neoclassical theory demonstrates excellent agreement be- tween the current density determined by CLISTE and the calculated profiles. Three ELM mitigation regimes are investigated: Type-II ELMs, ELMs sup- pressed by external magnetic perturbations, and Nitrogen seeded ELMs. In the first two cases, the current density is found to decrease as mitigation on- sets, indicating a more ballooning-like plasma behaviour. In the latter case, the flux surface averaged current density can decrease while the local current density increases, providing a mechanism to suppress both the peeling and ballooning modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For at least two millennia and probably much longer, the traditional vehicle for communicating geographical information to end-users has been the map. With the advent of computers, the means of both producing and consuming maps have radically been transformed, while the inherent nature of the information product has also expanded and diversified rapidly. This has given rise in recent years to the new concept of geovisualisation (GVIS), which draws on the skills of the traditional cartographer, but extends them into three spatial dimensions and may also add temporality, photorealistic representations and/or interactivity. Demand for GVIS technologies and their applications has increased significantly in recent years, driven by the need to study complex geographical events and in particular their associated consequences and to communicate the results of these studies to a diversity of audiences and stakeholder groups. GVIS has data integration, multi-dimensional spatial display advanced modelling techniques, dynamic design and development environments and field-specific application needs. To meet with these needs, GVIS tools should be both powerful and inherently usable, in order to facilitate their role in helping interpret and communicate geographic problems. However no framework currently exists for ensuring this usability. The research presented here seeks to fill this gap, by addressing the challenges of incorporating user requirements in GVIS tool design. It starts from the premise that usability in GVIS should be incorporated and implemented throughout the whole design and development process. To facilitate this, Subject Technology Matching (STM) is proposed as a new approach to assessing and interpreting user requirements. Based on STM, a new design framework called Usability Enhanced Coordination Design (UECD) is ten presented with the purpose of leveraging overall usability of the design outputs. UECD places GVIS experts in a new key role in the design process, to form a more coordinated and integrated workflow and a more focused and interactive usability testing. To prove the concept, these theoretical elements of the framework have been implemented in two test projects: one is the creation of a coastal inundation simulation for Whitegate, Cork, Ireland; the other is a flooding mapping tool for Zhushan Town, Jiangsu, China. The two case studies successfully demonstrated the potential merits of the UECD approach when GVIS techniques are applied to geographic problem solving and decision making. The thesis delivers a comprehensive understanding of the development and challenges of GVIS technology, its usability concerns, usability and associated UCD; it explores the possibility of putting UCD framework in GVIS design; it constructs a new theoretical design framework called UECD which aims to make the whole design process usability driven; it develops the key concept of STM into a template set to improve the performance of a GVIS design. These key conceptual and procedural foundations can be built on future research, aimed at further refining and developing UECD as a useful design methodology for GVIS scholars and practitioners.