4 resultados para Context-aware computing and systems

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview is given of a user interaction monitoring and analysis framework called BaranC. Monitoring and analysing human-digital interaction is an essential part of developing a user model as the basis for investigating user experience. The primary human-digital interaction, such as on a laptop or smartphone, is best understood and modelled in the wider context of the user and their environment. The BaranC framework provides monitoring and analysis capabilities that not only records all user interaction with a digital device (e.g. smartphone), but also collects all available context data (such as from sensors in the digital device itself, a fitness band or a smart appliances). The data collected by BaranC is recorded as a User Digital Imprint (UDI) which is, in effect, the user model and provides the basis for data analysis. BaranC provides functionality that is useful for user experience studies, user interface design evaluation, and providing user assistance services. An important concern for personal data is privacy, and the framework gives the user full control over the monitoring, storing and sharing of their data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring user interaction activities provides the basis for creating a user model that can be used to predict user behaviour and enable user assistant services. The BaranC framework provides components that perform UI monitoring (and collect all associated context data), builds a user model, and supports services that make use of the user model. In this case study, a Next-App prediction service is built to demonstrate the use of the framework and to evaluate the usefulness of such a prediction service. Next-App analyses a user's data, learns patterns, makes a model for a user, and finally predicts based on the user model and current context, what application(s) the user is likely to want to use. The prediction is pro-active and dynamic; it is dynamic both in responding to the current context, and also in that it responds to changes in the user model, as might occur over time as a user's habits change. Initial evaluation of Next-App indicates a high-level of satisfaction with the service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile Cloud Computing promises to overcome the physical limitations of mobile devices by executing demanding mobile applications on cloud infrastructure. In practice, implementing this paradigm is difficult; network disconnection often occurs, bandwidth may be limited, and a large power draw is required from the battery, resulting in a poor user experience. This thesis presents a mobile cloud middleware solution, Context Aware Mobile Cloud Services (CAMCS), which provides cloudbased services to mobile devices, in a disconnected fashion. An integrated user experience is delivered by designing for anticipated network disconnection, and low data transfer requirements. CAMCS achieves this by means of the Cloud Personal Assistant (CPA); each user of CAMCS is assigned their own CPA, which can complete user-assigned tasks, received as descriptions from the mobile device, by using existing cloud services. Service execution is personalised to the user's situation with contextual data, and task execution results are stored with the CPA until the user can connect with his/her mobile device to obtain the results. Requirements for an integrated user experience are outlined, along with the design and implementation of CAMCS. The operation of CAMCS and CPAs with cloud-based services is presented, specifically in terms of service description, discovery, and task execution. The use of contextual awareness to personalise service discovery and service consumption to the user's situation is also presented. Resource management by CAMCS is also studied, and compared with existing solutions. Additional application models that can be provided by CAMCS are also presented. Evaluation is performed with CAMCS deployed on the Amazon EC2 cloud. The resource usage of the CAMCS Client, running on Android-based mobile devices, is also evaluated. A user study with volunteers using CAMCS on their own mobile devices is also presented. Results show that CAMCS meets the requirements outlined for an integrated user experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Diagnostic decision-making is made through a combination of Systems 1 (intuition or pattern-recognition) and Systems 2 (analytic) thinking. The purpose of this study was to use the Cognitive Reflection Test (CRT) to evaluate and compare the level of Systems 1 and 2 thinking among medical students in pre-clinical and clinical programs. Methods: The CRT is a three-question test designed to measure the ability of respondents to activate metacognitive processes and switch to System 2 (analytic) thinking where System 1 (intuitive) thinking would lead them astray. Each CRT question has a correct analytical (System 2) answer and an incorrect intuitive (System 1) answer. A group of medical students in Years 2 & 3 (pre-clinical) and Years 4 (in clinical practice) of a 5-year medical degree were studied. Results: Ten percent (13/128) of students had the intuitive answers to the three questions (suggesting they generally relied on System 1 thinking) while almost half (44%) answered all three correctly (indicating full analytical, System 2 thinking). Only 3-13% had incorrect answers (i.e. that were neither the analytical nor the intuitive responses). Non-native English speaking students (n = 11) had a lower mean number of correct answers compared to native English speakers (n = 117: 1.0 s 2.12 respectfully: p < 0.01). As students progressed through questions 1 to 3, the percentage of correct System 2 answers increased and the percentage of intuitive answers decreased in both the pre-clinical and clinical students. Conclusions: Up to half of the medical students demonstrated full or partial reliance on System 1 (intuitive) thinking in response to these analytical questions. While their CRT performance has no claims to make as to their future expertise as clinicians, the test may be used in helping students to understand the importance of awareness and regulation of their thinking processes in clinical practice.