4 resultados para Contact Forms
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The objective of this paper is to investigate the effect of the pad size ratio between the chip and board end of a solder joint on the shape of that solder joint in combination with the solder volume available. The shape of the solder joint is correlated to its reliability and thus of importance. For low density chip bond pad applications Flip Chip (FC) manufacturing costs can be kept down by using larger size board pads suitable for solder application. By using “Surface Evolver” software package the solder joint shapes associated with different size/shape solder preforms and chip/board pad ratios are predicted. In this case a so called Flip-Chip Over Hole (FCOH) assembly format has been used. Assembly trials involved the deposition of lead-free 99.3Sn0.7Cu solder on the board side, followed by reflow, an underfill process and back die encapsulation. During the assembly work pad off-sets occurred that have been taken into account for the Surface Evolver solder joint shape prediction and accurately matched the real assembly. Overall, good correlation was found between the simulated solder joint shape and the actual fabricated solder joint shapes. Solder preforms were found to exhibit better control over the solder volume. Reflow simulation of commercially available solder preform volumes suggests that for a fixed stand-off height and chip-board pad ratio, the solder volume value and the surface tension determines the shape of the joint.
Resumo:
Accepted Version
Resumo:
The Silurian-Devonian Galway Granite Complex (GGC ~425-380Ma) is defined here as a suite of granitoid plutons that comprise the Main Galway Granite Batholith and the Earlier Plutons. The Main Batholith is a composite of the Carna Pluton in the west and the Kilkieran Pluton in the east and extends from Galway City ~130km to the west. The Earlier Plutons are spatially, temporally and structurally distinct, situated northwest of the Main Batholith and include the Roundstone, Omey, Inis and Letterfrack Plutons. The majority of isotopic and structural data currently available pertain to the Kilkieran Pluton, several tectonic models have already been devised for this part of the complex. These relate emplacement of the Kilkieran Pluton to extension across a large east-west Caledonian lineament, i.e. the Skird Rocks Fault, during late Caledonian transtension. No chronological data have been published that directly and accurately date the emplacement of the Carna Pluton or any of the Earlier Plutons. There is also a lack of data pertaining to the internal structure of these intrusions. Accordingly, no previous study has established the mechanisms of emplacement for the Earlier Plutons and only limited work is available for the Carna Pluton. As a consequense of this, constituents of the GGC have not previously been placed in a context relative to each other or to regional scale Silurio-Devonian kinematics. The current work focuses on the Omey, Roundstone and Carna Plutons. Here, results of detailed field and Anisotropy of Magnetic Susceptibiliy (AMS) fabric studies are presented. This work is complemented by geological mapping that focuses on fault dynamics and contact relationships. Interpretation of AMS data is aided by rock magnetic experiment data and petrographic microstructural evaluations of representative samples. A new geological map of the the Omey Pluton demonstrates that this intrusion has a defined roof and base which are gently inclined parallel to the fold hinge of the Connemara Antiform. AMS and petrographic data show the intrusion is cross cut by NNW-SSE shear zones that extend into the country rock. These pre-date and were active during magma emplacement. It is proposed that the Omey pluton was emplaced as a discordant phacolith. Pre-existing subvertical D5 faults in the host rock were reactived during emplacement, due to regional sinistral transpression, and served as centralised ascent conduits. A central portion of the Roundstone Pluton was mapped in detail for the first time. Two facies are identified, G1 forms the majority of the pluton and coeval G2 sheets cross cut G1 at the core of the pluton. NNW-SSE D5 faults mapped in the country rock extend across the pluton. These share a geometrical relationship with the distribution of submagmatic strain in the pluton and parallel the majoity of mapped subvertical G2 dykes. These data indicate that magma ascent was controlled by NNW-SSE conduits that are inherently related to those identifed in the Omey Pluton. It is proposed that the Roundstone Pluton is a punched laccolith, the symmetry and structure of which was controlled by pre-exising host rock structures and regional sinistral transpressive stress which presided during emplacement. Field relationships show the long axis of the Carna Pluton lies parallel to mulitple NNW-SSE shear zones. These are represented on a regional scale by the Clifden-Mace Fault which cross cuts the core of this intrusion. AMS and petrographic data show concentric emplacement fabrics were tectonically overprinted as magma cooled from the magmatic state due to this faulting. It is proposed that the Clifden-Mace Fault system was active during ascent and emplacement of the magma and that pluton inflation only terminated as this controlling structure went into compression due to the onset of regional transtension. U-Pb zircon laser ablation inductively coupled mass spectrometry (LA-ICP-MS) data has been compiled from four sample sites. New geochronological data from the Roundstone Pluton (RD1 = ± 3.2Ma) represent the oldest age determination obtained from any member of the GGC and demonstrates that this pluton predates the Carna Pluton by ~10Ma and probably intruded synchronously with the Omey Pluton (~422.5 ± 1.7Ma). Chronological data from the Carna Pluton (CN2 = 412.9 ± 2.5Ma; CN3 = 409.8 ± 7.2Ma; CN4 = 409.6 ± 3.6Ma) represent the first precise magma crystallisation age for this intrusion. This work shows this pluton is 10Ma older than the Kilkieran Pluton and that the supply of magma into the Carna Pluton had terminated by ~409Ma. Chronological, magnetic and field data have been utilised to evaluate the kinematic evolution of the Caledonides of western Ireland throughout the construction of the GGC. It is proposed that the GGC was constructed during four distinct episodes. The style of emplacement and the conduits used for magma transport to the site of emplacement was dependent on the orientation of local structures relative to the regional ambiant stress field. This philosophy is used to critically evaluate and progress existing hypotheses on the transition from regional transpression to regional transtension at the end of the Caledonian Orogeny.
Resumo:
This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains the full experimental details and spectral characterisation of all novel compounds synthesised in this project and relevant crystallographic information.