2 resultados para Construction process improvement
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
This thesis covers both the packaging of silicon photonic devices with fiber inputs and outputs as well as the integration of laser light sources with these same devices. The principal challenge in both of these pursuits is coupling light into the submicrometer waveguides that are the hallmark of silicon-on-insulator (SOI) systems. Previous work on grating couplers is leveraged to design new approaches to bridge the gap between the highly-integrated domain of silicon, the Interconnected world of fiber and the active region of III-V materials. First, a novel process for the planar packaging of grating couplers with fibers is explored in detail. This technology allows the creation of easy-to-use test platforms for laser integration and also stands on its own merits as an enabling technology for next-generation silicon photonics systems. The alignment tolerances of this process are shown to be well-suited to a passive alignment process and for wafer-scale assembly. Furthermore, this technology has already been used to package demonstrators for research partners and is included in the offerings of the ePIXfab silicon photonics foundry and as a design kit for PhoeniX Software’s MaskEngineer product. After this, a process for hybridly integrating a discrete edge-emitting laser with a silicon photonic circuit using near-vertical coupling is developed and characterized. The details of the various steps of the design process are given, including mechanical, thermal, optical and electrical steps. The interrelation of these design domains is also discussed. The construction process for a demonstrator is outlined, and measurements are presented of a series of single-wavelength Fabry-Pérot lasers along with a two-section laser tunable in the telecommunications C-band. The suitability and potential of this technology for mass manufacture is demonstrated, with further opportunities for improvement detailed and discussed in the conclusion.
Resumo:
Comfort is, in essence, satisfaction with the environment, and with respect to the indoor environment it is primarily satisfaction with the thermal conditions and air quality. Improving comfort has social, health and economic benefits, and is more financially significant than any other building cost. Despite this, comfort is not strictly managed throughout the building lifecycle. This is mainly due to the lack of an appropriate system to adequately manage comfort knowledge through the construction process into operation. Previous proposals to improve knowledge management have not been successfully adopted by the construction industry. To address this, the BabySteps approach was devised. BabySteps is an approach, proposed by this research, which states that for an innovation to be adopted into the industry it must be implementable through a number of small changes. This research proposes that improving the management of comfort knowledge will improve comfort. ComMet is a new methodology proposed by this research that manages comfort knowledge. It enables comfort knowledge to be captured, stored and accessed throughout the building life-cycle and so allowing it to be re-used in future stages of the building project and in future projects. It does this using the following: Comfort Performances – These are simplified numerical representations of the comfort of the indoor environment. Comfort Performances quantify the comfort at each stage of the building life-cycle using standard comfort metrics. Comfort Ratings - These are a means of classifying the comfort conditions of the indoor environment according to an appropriate standard. Comfort Ratings are generated by comparing different Comfort Performances. Comfort Ratings provide additional information relating to the comfort conditions of the indoor environment, which is not readily determined from the individual Comfort Performances. Comfort History – This is a continuous descriptive record of the comfort throughout the project, with a focus on documenting the items and activities, proposed and implemented, which could potentially affect comfort. Each aspect of the Comfort History is linked to the relevant comfort entity it references. These three components create a comprehensive record of the comfort throughout the building lifecycle. They are then stored and made available in a common format in a central location which allows them to be re-used ad infinitum. The LCMS System was developed to implement the ComMet methodology. It uses current and emerging technologies to capture, store and allow easy access to comfort knowledge as specified by ComMet. LCMS is an IT system that is a combination of the following six components: Building Standards; Modelling & Simulation; Physical Measurement through the specially developed Egg-Whisk (Wireless Sensor) Network; Data Manipulation; Information Recording; Knowledge Storage and Access.Results from a test case application of the LCMS system - an existing office room at a research facility - highlighted that while some aspects of comfort were being maintained, the building’s environment was not in compliance with the acceptable levels as stipulated by the relevant building standards. The implementation of ComMet, through LCMS, demonstrates how comfort, typically only considered during early design, can be measured and managed appropriately through systematic application of the methodology as means of ensuring a healthy internal environment in the building.