10 resultados para Computing Classification Systems
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Constraint programming has emerged as a successful paradigm for modelling combinatorial problems arising from practical situations. In many of those situations, we are not provided with an immutable set of constraints. Instead, a user will modify his requirements, in an interactive fashion, until he is satisfied with a solution. Examples of such applications include, amongst others, model-based diagnosis, expert systems, product configurators. The system he interacts with must be able to assist him by showing the consequences of his requirements. Explanations are the ideal tool for providing this assistance. However, existing notions of explanations fail to provide sufficient information. We define new forms of explanations that aim to be more informative. Even if explanation generation is a very hard task, in the applications we consider, we must manage to provide a satisfactory level of interactivity and, therefore, we cannot afford long computational times. We introduce the concept of representative sets of relaxations, a compact set of relaxations that shows the user at least one way to satisfy each of his requirements and at least one way to relax them, and present an algorithm that efficiently computes such sets. We introduce the concept of most soluble relaxations, maximising the number of products they allow. We present algorithms to compute such relaxations in times compatible with interactivity, achieving this by indifferently making use of different types of compiled representations. We propose to generalise the concept of prime implicates to constraint problems with the concept of domain consequences, and suggest to generate them as a compilation strategy. This sets a new approach in compilation, and allows to address explanation-related queries in an efficient way. We define ordered automata to compactly represent large sets of domain consequences, in an orthogonal way from existing compilation techniques that represent large sets of solutions.
Resumo:
The technological role of handheld devices is fundamentally changing. Portable computers were traditionally application specific. They were designed and optimised to deliver a specific task. However, it is now commonly acknowledged that future handheld devices need to be multi-functional and need to be capable of executing a range of high-performance applications. This thesis has coined the term pervasive handheld computing systems to refer to this type of mobile device. Portable computers are faced with a number of constraints in trying to meet these objectives. They are physically constrained by their size, their computational power, their memory resources, their power usage, and their networking ability. These constraints challenge pervasive handheld computing systems in achieving their multi-functional and high-performance requirements. This thesis proposes a two-pronged methodology to enable pervasive handheld computing systems meet their future objectives. The methodology is a fusion of two independent and yet complementary concepts. The first step utilises reconfigurable technology to enhance the physical hardware resources within the environment of a handheld device. This approach recognises that reconfigurable computing has the potential to dynamically increase the system functionality and versatility of a handheld device without major loss in performance. The second step of the methodology incorporates agent-based middleware protocols to support handheld devices to effectively manage and utilise these reconfigurable hardware resources within their environment. The thesis asserts the combined characteristics of reconfigurable computing and agent technology can meet the objectives of pervasive handheld computing systems.
Resumo:
The electroencephalogram (EEG) is a medical technology that is used in the monitoring of the brain and in the diagnosis of many neurological illnesses. Although coarse in its precision, the EEG is a non-invasive tool that requires minimal set-up times, and is suitably unobtrusive and mobile to allow continuous monitoring of the patient, either in clinical or domestic environments. Consequently, the EEG is the current tool-of-choice with which to continuously monitor the brain where temporal resolution, ease-of- use and mobility are important. Traditionally, EEG data are examined by a trained clinician who identifies neurological events of interest. However, recent advances in signal processing and machine learning techniques have allowed the automated detection of neurological events for many medical applications. In doing so, the burden of work on the clinician has been significantly reduced, improving the response time to illness, and allowing the relevant medical treatment to be administered within minutes rather than hours. However, as typical EEG signals are of the order of microvolts (μV ), contamination by signals arising from sources other than the brain is frequent. These extra-cerebral sources, known as artefacts, can significantly distort the EEG signal, making its interpretation difficult, and can dramatically disimprove automatic neurological event detection classification performance. This thesis therefore, contributes to the further improvement of auto- mated neurological event detection systems, by identifying some of the major obstacles in deploying these EEG systems in ambulatory and clinical environments so that the EEG technologies can emerge from the laboratory towards real-world settings, where they can have a real-impact on the lives of patients. In this context, the thesis tackles three major problems in EEG monitoring, namely: (i) the problem of head-movement artefacts in ambulatory EEG, (ii) the high numbers of false detections in state-of-the-art, automated, epileptiform activity detection systems and (iii) false detections in state-of-the-art, automated neonatal seizure detection systems. To accomplish this, the thesis employs a wide range of statistical, signal processing and machine learning techniques drawn from mathematics, engineering and computer science. The first body of work outlined in this thesis proposes a system to automatically detect head-movement artefacts in ambulatory EEG and utilises supervised machine learning classifiers to do so. The resulting head-movement artefact detection system is the first of its kind and offers accurate detection of head-movement artefacts in ambulatory EEG. Subsequently, addtional physiological signals, in the form of gyroscopes, are used to detect head-movements and in doing so, bring additional information to the head- movement artefact detection task. A framework for combining EEG and gyroscope signals is then developed, offering improved head-movement arte- fact detection. The artefact detection methods developed for ambulatory EEG are subsequently adapted for use in an automated epileptiform activity detection system. Information from support vector machines classifiers used to detect epileptiform activity is fused with information from artefact-specific detection classifiers in order to significantly reduce the number of false detections in the epileptiform activity detection system. By this means, epileptiform activity detection which compares favourably with other state-of-the-art systems is achieved. Finally, the problem of false detections in automated neonatal seizure detection is approached in an alternative manner; blind source separation techniques, complimented with information from additional physiological signals are used to remove respiration artefact from the EEG. In utilising these methods, some encouraging advances have been made in detecting and removing respiration artefacts from the neonatal EEG, and in doing so, the performance of the underlying diagnostic technology is improved, bringing its deployment in the real-world, clinical domain one step closer.
Resumo:
In the last decade, we have witnessed the emergence of large, warehouse-scale data centres which have enabled new internet-based software applications such as cloud computing, search engines, social media, e-government etc. Such data centres consist of large collections of servers interconnected using short-reach (reach up to a few hundred meters) optical interconnect. Today, transceivers for these applications achieve up to 100Gb/s by multiplexing 10x 10Gb/s or 4x 25Gb/s channels. In the near future however, data centre operators have expressed a need for optical links which can support 400Gb/s up to 1Tb/s. The crucial challenge is to achieve this in the same footprint (same transceiver module) and with similar power consumption as today’s technology. Straightforward scaling of the currently used space or wavelength division multiplexing may be difficult to achieve: indeed a 1Tb/s transceiver would require integration of 40 VCSELs (vertical cavity surface emitting laser diode, widely used for short‐reach optical interconnect), 40 photodiodes and the electronics operating at 25Gb/s in the same module as today’s 100Gb/s transceiver. Pushing the bit rate on such links beyond today’s commercially available 100Gb/s/fibre will require new generations of VCSELs and their driver and receiver electronics. This work looks into a number of state‐of-the-art technologies and investigates their performance restraints and recommends different set of designs, specifically targeting multilevel modulation formats. Several methods to extend the bandwidth using deep submicron (65nm and 28nm) CMOS technology are explored in this work, while also maintaining a focus upon reducing power consumption and chip area. The techniques used were pre-emphasis in rising and falling edges of the signal and bandwidth extensions by inductive peaking and different local feedback techniques. These techniques have been applied to a transmitter and receiver developed for advanced modulation formats such as PAM-4 (4 level pulse amplitude modulation). Such modulation format can increase the throughput per individual channel, which helps to overcome the challenges mentioned above to realize 400Gb/s to 1Tb/s transceivers.
Resumo:
High volumes of data traffic along with bandwidth hungry applications, such as cloud computing and video on demand, is driving the core optical communication links closer and closer to their maximum capacity. The research community has clearly identifying the coming approach of the nonlinear Shannon limit for standard single mode fibre [1,2]. It is in this context that the work on modulation formats, contained in Chapter 3 of this thesis, was undertaken. The work investigates the proposed energy-efficient four-dimensional modulation formats. The work begins by studying a new visualisation technique for four dimensional modulation formats, akin to constellation diagrams. The work then carries out one of the first implementations of one such modulation format, polarisation-switched quadrature phase-shift keying (PS-QPSK). This thesis also studies two potential next-generation fibres, few-mode and hollow-core photonic band-gap fibre. Chapter 4 studies ways to experimentally quantify the nonlinearities in few-mode fibre and assess the potential benefits and limitations of such fibres. It carries out detailed experiments to measure the effects of stimulated Brillouin scattering, self-phase modulation and four-wave mixing and compares the results to numerical models, along with capacity limit calculations. Chapter 5 investigates hollow-core photonic band-gap fibre, where such fibres are predicted to have a low-loss minima at a wavelength of 2μm. To benefit from this potential low loss window requires the development of telecoms grade subsystems and components. The chapter will outline some of the development and characterisation of these components. The world's first wavelength division multiplexed (WDM) subsystem directly implemented at 2μm is presented along with WDM transmission over hollow-core photonic band-gap fibre at 2μm. References: [1]P. P. Mitra, J. B. Stark, Nature, 411, 1027-1030, 2001 [2] A. D. Ellis et al., JLT, 28, 423-433, 2010.
Towards a situation-awareness-driven design of operational business intelligence & analytics systems
Resumo:
With the swamping and timeliness of data in the organizational context, the decision maker’s choice of an appropriate decision alternative in a given situation is defied. In particular, operational actors are facing the challenge to meet business-critical decisions in a short time and at high frequency. The construct of Situation Awareness (SA) has been established in cognitive psychology as a valid basis for understanding the behavior and decision making of human beings in complex and dynamic systems. SA gives decision makers the possibility to make informed, time-critical decisions and thereby improve the performance of the respective business process. This research paper leverages SA as starting point for a design science project for Operational Business Intelligence and Analytics systems and suggests a first version of design principles.
Resumo:
Modern information systems (ISs) are becoming increasingly complex. Simultaneously, organizational changes are occurring more often and more rapidly. Therefore, emergent behavior and organic adaptivity are key advantages of ISs. In this paper, a design science research (DSR) question for design-oriented information systems research (DISR) is proposed: Can the application of biomimetic principles to IS design result in the creation of value by innovation? Accordingly, the properties of biological IS are analyzed, and these insights are crystallized into a theoretical framework to address the three major aspects of biomimetic ISs: user experience, information processing, and management cybernetics. On this basis, the research question is elaborated together with a starting point for a research methodology in biomimetic information systems.
Effectuation and its implications for socio-technical design science research in information systems
Resumo:
We study the implications of the effectuation concept for socio-technical artifact design as part of the design science research (DSR) process in information systems (IS). Effectuation logic is the opposite of causal logic. Ef-fectuation does not focus on causes to achieve a particular effect, but on the possibilities that can be achieved with extant means and resources. Viewing so-cio-technical IS DSR through an effectuation lens highlights the possibility to design the future even without set goals. We suggest that effectuation may be a useful perspective for design in dynamic social contexts leading to a more dif-ferentiated view on the instantiation of mid-range artifacts for specific local ap-plication contexts. Design science researchers can draw on this paper’s conclu-sions to view their DSR projects through a fresh lens and to reexamine their re-search design and execution. The paper also offers avenues for future research to develop more concrete application possibilities of effectuation in socio-technical IS DSR and, thus, enrich the discourse.
Resumo:
Our research follows a design science approach to develop a method that supports the initialization of ES implementation projects – the chartering phase. This project phase is highly relevant for implementation success, but is understudied in IS research. In this paper, we derive design principles for a chartering method based on a systematic review of ES implementation literature and semi-structured expert interviews. Our analysis identifies differences in the importance of certain success factors depending on the system type. The proposed design principles are built on these factors and are linked to chartering key activities. We specifically consider system-type-specific chartering aspects for process-centric Business Intelligence & Analytics (BI&A) systems, which are an emerging class of systems at the intersection of BI&A and business process management. In summary, this paper proposes design principles for a chartering method – considering specifics of process-centric BI&A.
Resumo:
As the Internet has changed communication, commerce, and the distribution of information, so it is changing Information Systems Research (ISR). The goal of this paper is to put the topic of application and reliability of online research into the focus of ISR by exploring the extension of online research methods (ORM) into its popular publication outlets. 513 articles from high ranked ISR publication outlets from the last decade have been analyzed using online content analysis. The findings show that in ISR online research methods are applied despite the missing discussion on the validity of the theories and methods that were defined offline within the new environment and the associated challenges.