5 resultados para Computer communication networks
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
In this thesis a novel transmission format, named Coherent Wavelength Division Multiplexing (CoWDM) for use in high information spectral density optical communication networks is proposed and studied. In chapter I a historical view of fibre optic communication systems as well as an overview of state of the art technology is presented to provide an introduction to the subject area. We see that, in general the aim of modern optical communication system designers is to provide high bandwidth services while reducing the overall cost per transmitted bit of information. In the remainder of the thesis a range of investigations, both of a theoretical and experimental nature are carried out using the CoWDM transmission format. These investigations are designed to consider features of CoWDM such as its dispersion tolerance, compatibility with forward error correction and suitability for use in currently installed long haul networks amongst others. A high bit rate optical test bed constructed at the Tyndall National Institute facilitated most of the experimental work outlined in this thesis and a collaboration with France Telecom enabled long haul transmission experiments using the CoWDM format to be carried out. An amount of research was also carried out on ancillary topics such as optical comb generation, forward error correction and phase stabilisation techniques. The aim of these investigations is to verify the suitability of CoWDM as a cost effective solution for use in both current and future high bit rate optical communication networks
Resumo:
This thesis details an experimental and simulation investigation of some novel all-optical signal processing techniques for future optical communication networks. These all-optical techniques include modulation format conversion, phase discrimination and clock recovery. The methods detailed in this thesis use the nonlinearities associated with semiconductor optical amplifiers (SOA) to manipulate signals in the optical domain. Chapter 1 provides an introduction into the work detailed in this thesis, discusses the increased demand for capacity in today’s optical fibre networks and finally explains why all-optical signal processing may be of interest for future optical networks. Chapter 2 discusses the relevant background information required to fully understand the all-optical techniques demonstrated in this thesis. Chapter 3 details some pump-probe measurement techniques used to calculate the gain and phase recovery times of a long SOA. A remarkably fast gain recovery is observed and the wavelength dependent nature of this recovery is investigated. Chapter 4 discusses the experimental demonstration of an all-optical modulation conversion technique which can convert on-off- keyed data into either duobinary or alternative mark inversion. In Chapter 5 a novel phase sensitive frequency conversion scheme capable of extracting the two orthogonal components of a quadrature phase modulated signal into two separate frequencies is demonstrated. Chapter 6 investigates a novel all-optical clock recovery technique for phase modulated optical orthogonal frequency division multiplexing superchannels and finally Chapter 7 provides a brief conclusion.
Resumo:
Dilute bismide alloys, containing small fractions of bismuth (Bi), have recently attracted interest due to their potential for applications in a range of semiconductor devices. Experiments have revealed that dilute bismide alloys such as GaBixAs1−x, in which a small fraction x of the atoms in the III-V semiconductor GaAs are replaced by Bi, exhibit a number of unusual and unique properties. For example, the band gap energy (E g) decreases rapidly with increasing Bi composition x, by up to 90 meV per % Bi replacing As in the alloy. This band gap reduction is accompanied by a strong increase in the spin-orbit-splitting energy (ΔSO) with increasing x, and both E g and ΔSO are characterised by strong, composition-dependent bowing. The existence of a ΔSO > E g regime in the GaBixAs1−x alloy has been demonstrated for x ≳10%, a band structure condition which is promising for the development of highly efficient, temperature stable semiconductor lasers that could lead to large energy savings in future optical communication networks. In addition to their potential for specific applications, dilute bismide alloys have also attracted interest from a fundamental perspective due to their unique properties. In this thesis we develop the theory of the electronic and optical properties of dilute bismide alloys. By adopting a multi-scale approach encompassing atomistic calculations of the electronic structure using the semi-empirical tight-binding method, as well as continuum calculations based on the k•p method, we develop a fundamental understanding of this unusual class of semiconductor alloys and identify general material properties which are promising for applications in semiconductor optoelectronic and photovoltaic devices. By performing detailed supercell calculations on both ordered and disordered alloys we explicitly demonstrate that Bi atoms act as isovalent impurities when incorporated in dilute quantities in III-V (In)GaAs(P) materials, strongly perturbing the electronic structure of the valence band. We identify and quantify the causes and consequences of the unusual electronic properties of GaBixAs1−x and related alloys, and our analysis is reinforced throughout by a series of detailed comparisons to the results of experimental measurements. Our k•p models of the band structure of GaBixAs1−x and related alloys, which we derive directly from detailed atomistic calculations, are ideally suited to the study of dilute bismide-based devices. We focus in the latter part of the thesis on calculations of the electronic and optical properties of dilute bismide quantum well lasers. In addition to developing an understanding of the effects of Bi incorporation on the operational characteristics of semiconductor lasers, we also present calculations which have been used explicitly in designing and optimising the first generation of GaBixAs1−x-based devices.
Resumo:
The pervasive use of mobile technologies has provided new opportunities for organisations to achieve competitive advantage by using a value network of partners to create value for multiple users. The delivery of a mobile payment (m-payment) system is an example of a value network as it requires the collaboration of multiple partners from diverse industries, each bringing their own expertise, motivations and expectations. Consequently, managing partnerships has been identified as a core competence required by organisations to form viable partnerships in an m-payment value network and an important factor in determining the sustainability of an m-payment business model. However, there is evidence that organisations lack this competence which has been witnessed in the m-payment domain where it has been attributed as an influencing factor in a number of failed m-payment initiatives since 2000. In response to this organisational deficiency, this research project leverages the use of design thinking and visualisation tools to enhance communication and understanding between managers who are responsible for managing partnerships within the m-payment domain. By adopting a design science research approach, which is a problem solving paradigm, the research builds and evaluates a visualisation tool in the form of a Partnership Management Canvas. In doing so, this study demonstrates that when organisations encourage their managers to adopt design thinking, as a way to balance their analytical thinking and intuitive thinking, communication and understanding between the partners increases. This can lead to a shared understanding and a shared commitment between the partners. In addition, the research identifies a number of key business model design issues that need to be considered by researchers and practitioners when designing an m-payment business model. As an applied research project, the study makes valuable contributions to the knowledge base and to the practice of management.
Resumo:
The influence of communication technology on group decision-making has been examined in many studies. But the findings are inconsistent. Some studies showed a positive effect on decision quality, other studies have shown that communication technology makes the decision even worse. One possible explanation for these different findings could be the use of different Group Decision Support Systems (GDSS) in these studies, with some GDSS better fitting to the given task than others and with different sets of functions. This paper outlines an approach with an information system solely designed to examine the effect of (1) anonymity, (2) voting and (3) blind picking on decision quality, discussion quality and perceived quality of information.