3 resultados para Composition body

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goal of neonatal nutrition in the preterm infant is to achieve postnatal growth and body composition approximating that of a normal fetus of the same postmenstrual age and to obtain a functional outcome comparable to infants born at term. However, in clinical practice such a pattern is seldom achieved, with growth failure and altered body composition being extensively reported. The BabyGrow preterm nutrition study was a longitudinal, prospective, observational study designed to investigate nutrition and growth in 59 preterm infants following the implementation of evidence-based nutrition guidelines in the neonatal unit at Cork University Maternity Hospital. Nutrient delivery was precisely measured during the entire hospital stay and intakes were compared with current international recommendations. Barriers to nutrient delivery were identified across the phases of nutritional support i.e. exclusive parenteral nutrition and transition (establishment of enteral feeds) phases of nutrition and nutritional strategies to optimise nutrient delivery were proposed according to these phases. Growth was measured from birth up to 2 months corrected age and body composition was assessed in terms of fat mass and lean body mass by air displacement plethysmography (PEA POD) at 34 weeks gestation, term corrected age and 2 months corrected age. Anthropometric and body composition data in the preterm cohort were compared with a term reference group from the Cork BASELINE Birth Cohort Study (n=1070) at similar time intervals. The clinical and nutritional determinants of growth and body composition during the neonatal period were reported for the first time. These data have international relevance, informing authoritative agencies developing evidence-based practice guidelines for neonatal nutritional support. In the future, the nutritional management of preterm infants may need to be individualised to consider gestational age, birth weight as well as preterm morbidity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis is presented in two parts. Data for this research is from the Cork BASELINE (Babies after SCOPE, Evaluating Longitudinal Impact using Neurological and Nutritional Endpoints) Birth Cohort Study (n = 2137). In this prospective birth cohort study, pediatric follow-up with in-person appointments were repeated from the time of birth through to 2, 6 and 12 months, and at 2 years. Body composition was measured by air displacement plethysmography at birth and at 2 months using the PEA POD Infant Body Composition Tracking System. This thesis provides the first extensive report on the study’s 2 year assessment. In part one, the aims were to investigate potential early-life risk factors for childhood overweight and obesity, including rapid growth and body composition in infancy and umbilical cord concentrations of leptin and high molecular weight (HMW) adiponectin. This research is the first to describe rapid growth in early infancy in terms of changes in direct measures of body composition. These are also the first data to examine associations between umbilical cord leptin and HMW adiponectin concentrations and changes in fat and lean mass in early infancy. These data provide additional insight into characterising the growth trajectory in infancy and into the role of perinatal factors in determining infant growth and subsequent overweight/obesity risk. In part two of this thesis, the aims were to quantify vitamin D intake and status at 2 years and to investigate whether 25-hydroxyvitamin D [25(OH)D] concentrations in early pregnancy and in umbilical cord blood are associated with infant growth and body composition. There was a low prevalence of vitamin D deficiency among Irish 2 year olds (n = 742) despite a high prevalence of inadequate intakes and high latitude (51°N). Maternal 25(OH)D concentrations at 15 weeks gestation and cord 25(OH)D concentrations at delivery were not associated with infant growth or adiposity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in culture independent technologies over the last decade have highlighted the pivotal role which the gut microbiota plays in maintaining human health. Conversely, perturbations to the composition or actions of the ‘normal/functioning’ microbiota have been frequently associated with the pathogenesis of several disease states. Therefore the selective modulation of enteric microbial communities represents a viable target for the development of novel treatments for such diseases. Notably, while bovine whey proteins and exercise have been shown to positively influence several physiological processes, such as energy balance, their effect on the composition or functionality of the gut microbiota remains largely unknown. In this thesis, a variety of ex vivo, murine and human models are used in conjunction with high-throughput DNA sequencing-based analysis to provide valuable and novel insights into the impact of both whey proteins and exercise on enteric microbial communities. Overall the results presented in this thesis highlight that the consumption both whey protein isolate (WPI), and individual component proteins of whey such as bovine serum albumin (BSA) and lactoferrin, reduce high fat diet associated body weight gain and are associated with beneficial alterations within the murine gut microbiota. Although the impact of exercise on enteric microbial communities remains less clear, it may be that longer term investigations are required for the true effect of exercise on the gut microbiota to be fully elucidated.