2 resultados para Compact Circular Polarization

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever increasing demand for broadband communications requires sophisticated devices. Photonic integrated circuits (PICs) are an approach that fulfills those requirements. PICs enable the integration of different optical modules on a single chip. Low loss fiber coupling and simplified packaging are key issues in keeping the price of PICs at a low level. Integrated spot size converters (SSC) offer an opportunity to accomplish this. Design, fabrication and characterization of SSCs based on an asymmetric twin waveguide (ATG) at a wavelength of 1.55 μm are the main elements of this dissertation. It is theoretically and experimentally shown that a passive ATG facilitates a polarization filter mechanism. A reproducible InP process guideline is developed that achieves vertical waveguides with smooth sidewalls. Birefringence and resonant coupling are used in an ATG to enable a polarization filtering and splitting mechanism. For the first time such a filter is experimentally shown. At a wavelength of 1610 nm a power extinction ratio of (1.6 ± 0.2) dB was measured for the TE- polarization in a single approximately 372 μm long TM- pass polarizer. A TE-pass polarizer with a similar length was demonstrated with a TM/TE-power extinction ratio of (0.7 ± 0.2) dB at 1610 nm. The refractive indices of two different InGaAsP compositions, required for a SSC, are measured by the reflection spectroscopy technique. A SSC layout for dielectric-free fabricated compact photodetectors is adjusted to those index values. The development and the results of the final fabrication procedure for the ATG concept are outlined. The etch rate, sidewall roughness and selectivity of a Cl2/CH4/H2 based inductively coupled plasma (ICP) etch are investigated by a design of experiment approach. The passivation effect of CH4 is illustrated for the first time. Conditions are determined for etching smooth and vertical sidewalls up to a depth of 5 μm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the properties of strained tetrahedrally bonded materials are explored theoretically, with special focus on group-III nitrides. In order to do so, a multiscale approach is taken: accurate quantitative calculations of material properties are carried out in a quantum first-principles frame, for small systems. These properties are then extrapolated and empirical methods are employed to make predictions for larger systems, such as alloys or nanostructures. We focus our attention on elasticity and electric polarization in semiconductors. These quantities serve as input for the calculation of the optoelectronic properties of these systems. Regarding the methods employed, our first-principles calculations use highly- accurate density functional theory (DFT) within both standard Kohn-Sham and generalized (hybrid functional) Kohn-Sham approaches. We have developed our own empirical methods, including valence force field (VFF) and a point-dipole model for the calculation of local polarization and local polarization potential. Our local polarization model gives insight for the first time to local fluctuations of the electric polarization at an atomistic level. At the continuum level, we have studied composition-engineering optimization of nitride nanostructures for built-in electrostatic field reduction, and have developed a highly efficient hybrid analytical-numerical staggered-grid computational implementation of continuum elasticity theory, that is used to treat larger systems, such as quantum dots.