8 resultados para Colon-cancer Cells
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Despite studies demonstrating that inhibition of cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) has significant chemotherapeutic benefits in vitro and in vivo, inhibition of COX enzymes is associated with serious gastrointestinal and cardiovascular side effects, limiting the clinical utility of these drugs. PGE2 signals through four different receptors (EP1–EP4) and targeting individual receptor(s) may avoid these side effects, while retaining significant anticancer benefits. Here, we show that targeted inhibition of the EP1 receptor in the tumor cells and the tumor microenvironment resulted in the significant inhibition of tumor growth in vivo. Both dietary administration and direct injection of the EP1 receptor-specific antagonist, ONO-8713, effectively reduced the growth of established CT26 tumors in BALB/c mice, with suppression of the EP1 receptor in the tumor cells alone less effective in reducing tumor growth. This antitumor effect was associated with reduced Fas ligand expression and attenuated tumor-induced immune suppression. In particular, tumor infiltration by CD4+CD25+Foxp3+ regulatory T cells was decreased, whereas the cytotoxic activity of isolated splenocytes against CT26 cells was increased. F4/80+ macrophage infiltration was also decreased; however, there was no change in macrophage phenotype. These findings suggest that the EP1 receptor represents a potential target for the treatment of colon cancer.
Resumo:
This thesis investigates the mechanisms by which HRG-1 contributes to the invasive and cytoprotective signalling pathways in cancer cells through its effects on VATPase activity and heme transport. Plasma membrane-localised V-ATPase activity correlates with enhanced metastatic potential in cancer cells, which is attributed to extrusion of protons into the extracellular space and activation of pH-sensitive, extracellular matrix degrading-proteases. We found that HRG-1 is co-expressed with the V-ATPase at the plasma membrane of certain aggressive cancer cell types. Modulation of HRG-1 expression altered both the localisation and activity of the VATPase. We also found that HRG-1 enhances trafficking of essential transporters such as the glucose transporter (GLUT-1) in cancer cells, and increases glucose uptake, which is required for cancer cell growth, metabolism and V-ATPase assembly. Heme is potentially cytotoxic, owing to its iron moiety, and therefore the trafficking of heme is tightly controlled in cells. We hypothesised that HRG-1 is required for the transport of heme to intracellular compartments. Importantly, we found that HRG-1 interacts with the heme oxygenases that are necessary for heme catabolism. HRG-1 is also required for trafficking of both heme-bound and nonheme-bound receptors and suppression of HRG-1 results in perturbed receptor trafficking to the lysosome. Suppression of HRG-1 in HeLa cells increases toxic heme accumulation, reactive oxygen species accumulation, and DNA damage resulting in caspasedependent cell death. Mutation of essential heme binding residues in HRG-1 results in decreased heme binding to HRG-1. Interestingly, cells expressing heme-binding HRG-1 mutants exhibit decreased internalisation of the transferrin receptor compared to cells expressing wildtype HRG-1. These findings suggest that HRG- 1/heme trafficking contributes to a hitherto unappreciated aspect of receptormediated endocytosis. Overall, the findings of this thesis show that HRG-1-mediated regulation of intracellular and extracellular pH through V-ATPase activity is essential for a functioning endocytic pathway. This is critical for cells to acquire nutrients such as folate, iron and glucose and to mediate signalling in response to growth factor activation. Thus, HRG-1 facilitates enhanced metabolic activity of cancer cells to enable tumour growth and metastasis.
Resumo:
Cytokine-driven signalling shapes immune homeostasis and guides inflammatory responses mainly through induction of specific gene expression programmes both within and outside the immune cell compartment. These transcriptional outputs are often amplified via cytokine synergy, which sets a stimulatory threshold that safeguards from exacerbated inflammation and immunopathology. In this study, we investigated the molecular mechanisms underpinning synergy between two pivotal Th1 cytokines, IFN-γ and TNF-α, in human intestinal epithelial cells. These two proinflammatory mediators induce a unique state of signalling and transcriptional synergy implicated in processes such as antiviral and antitumour immunity, intestinal barrier and pancreatic β-cell dysfunction. Since its discovery more than 30 years ago, this biological phenomenon remains, however, only partially defined. Here, using a functional genomics approach including RNAi perturbation screens and small-molecule inhibitors, we identified two new regulators of IFN-γ/TNF-α-induced chemokine and antiviral gene and protein expression, a Bcl-2 protein BCL-G and a histone demethylase UTX. We also discovered that IFN-γ/TNF-α synergise to trigger a coordinated shutdown of major receptor tyrosine kinases expression in colon cancer cells. Together, these findings extend our current understanding of how IFN-γ/TNF-α synergy elicits qualitatively and quantitatively distinct outputs in the intestinal epithelium. Given the well-documented role of this synergistic state in immunopathology of various disorders, our results may help to inform the identification of high quality and biologically relevant druggable targets for diseases characterised by an IFN-γ/TNF-α high immune signature
Resumo:
Background and Aim: During carcinogenesis, tumours develop multiple mechanisms to evade the immune system and suppress the anti-tumour immune response. Upregulation of Fas Ligand (FasL/CD95L) expression may represent one such mechanism. FasL is a member of the tumour necrosis factor superfamily that triggers apoptotic cell death following ligation to its receptor Fas. Numerous studies have demonstrated upregulated FasL expression in tumor cells, with FasL expression associated with numerous pro-tumorigenic effects. However, little is known about the mechanisms that regulate FasL expression in tumours. The cyclooxgenase (COX) signalling pathway may play an important role in colon carcinogenesis, via the production of prostaglandins, in particular PGE2. PGE2 signals through four different receptor subtypes, EP1 – EP4. Thus, the aim of this study was to investigate the effect of targeting the PGE2-FasL signaling pathway. Results: (i) PGE2 induces FasL expression via the EP1 receptor in colon cancer cells. (ii) Suppression of FasL expression in colon tumour cells in vivo significantly delays and reduces tumour growth. (iii) Blocking EP1 receptor signaling, or suppression of the EP1 receptor in colon tumour cells, reduces tumour growth in vivo. Suppression of tumour growth correlates in part with suppression of FasL expression. (iv) The reduction in tumour growth is associated with an improved anti-tumour immune response. Tumour infiltration by Treg cells and macrophages was reduced, and the cytotoxic activity of CTL generated from splenocytes isolated from these mice increased. Conclusion: 1) Targeting FasL expression by blocking PGE2-EP1 receptor signalling reduces tumour development in vivo. 2) The mechanism is indirect but is associated with an increased anti-tumour immune response. Thus, unraveling the mechanisms regulating FasL expression and the pro-tumorigenic effects of the EP1 receptor may aid in the search for new therapeutic targets against colon cancer.
Resumo:
Background: The role of Fas (CD95) and its ligand, Fas ligand (FasL/CD95L), is poorly understood in the intestine. Whilst Fas is best studies in terms of its function in apoptosis, recent studies suggest that Fas ligation may mediate additional, non-apoptotic functions such as inflammation. Toll like Receptors (TLRs) play an important role in mediating inflammation and homeostasis in the intestine. Recent studies have shown that a level of crosstalk exists between the Fas and TLR signalling pathways but this has not yet been investigated in the intestine. Aim: The aim of this study was to evaluate potential cross-talk between TLRs and Fas/FasL system in intestinal cancer cells. Results: Treatment with TLR4 and TLR5 ligands, but not ligands for TLR2 and TLR9 increased the expression of Fas and FasL in intestinal cancer cells in vitro. Consistent with this, expression of Fas and FasL was reduced in the distal colon tissue from germ-free (GF), TLR4 and TLR5 knock-out (KO) mice but was unchanged in TLR2KO tissue, suggesting that intestinal cancer cells display a degree of specificity in their ability to upregulate Fas and FasL expression in response to TLR ligation. Expression of both Fas and FasL was significantly reduced in TRIF KO tissue, indicating that signalling via TRIF by TLR4 and TLR5 agonists may be responsible for the induction of Fas and FasL expression in intestinal cancer cells. In addition, modulating Fas signalling using agonistic anti-Fas augmented TLR4 and TLR5-mediated tumour necrosis factor alpha (TNFα) and interleukin 8 (IL)-8 production by intestinal cancer cells, suggesting crosstalk occurs between these receptors in these cells. Furthermore, suppression of Fas in intestinal cancer cells reduced the ability of the intestinal pathogens, Salmonella typhimurium and Listeria monocytogenes to induce the expression of IL-8, suggesting that Fas signalling may play a role in intestinal host defence against pathogens. Inflammation is known to be important in colon tumourigenesis and Fas signalling on intestinal cancer cells has been shown to result in the production of inflammatory mediators. Fas-mediated signalling may therefore play a role in colon cancer development. Suppression of tumour-derived Fas by 85% led to a reduction in the tumour volume and changes in tumour infiltrating macrophages and neutrophils. TLR4 signalling has been shown to play a role in colon cancer via the recruitment and activation of alternatively activated immune cells. Given the crosstalk seen between Fas and TLR4 signalling in intestinal cancer cells in vitro, suppressing Fas signalling may enhance the efficacy of TLR4 antagonism in vivo. TLR4 antagonism resulted in smaller tumours with fewer infiltrating neutrophils. Whilst Fas downregulation did not significantly augment the ability of TLR4 antagonism to reduce the final tumour volume, Fas suppression may augment the anti-tumour effects of TLR4 antagonism as neutrophil infiltration was further reduced upon combinatorial treatment. Conclusion: Together, this study demonstrates evidence of a new role for Fas in the intestinal immune response and that manipulating Fas signalling has potential anti-tumour benefit.
Resumo:
Colorectal cancer is the most common cause of death due to malignancy in nonsmokers in the western world. In 1995 there were 1,757 cases of colon cancer in Ireland. Most colon cancer is sporadic, however ten percent of cases occur where there is a previous family history of the disease. In an attempt to understand the tumorigenic pathway in Irish colon cancer patients, a number of genes associated with colorectal cancer development were analysed in Irish sporadic and HNPCC colon cancer patients. The hereditary forms of colon cancer include Familial adenomatous polyposis coli (FAP) and Hereditary Non-Polyposis Colon Cancer (HNPCC). Genetic analysis of the gene responsible for FAP, (the APC gene) has been previously performed on Irish families, however the genetic analysis of HNPCC families is limited. In an attempt to determine the mutation spectrum in Irish HNPCC pedigrees, the hMSH2 and hMLHl mismatch repair genes were screened in 18 Irish HNPCC families. Using SSCP analysis followed by DNA sequencing, five mutations were identified, four novel and a previously reported mutation. In families where a mutation was detected, younger asyptomatic members were screened for the presence of the predisposing mutation (where possible). Detection of mutations is particularly important for the identification of at risk individuals as the early diagnosis of cancer can vastly improve the prognosis. The sensitive and efficient detection of multiple different mutations and polymorphisms in DNA is of prime importance for genetic diagnosis and the identification of disease genes. A novel mutation detection technique has recently been developed in our laboratory. In order to assess the efficacy and application of the methodology in the analysis of cancer associated genes, a protocol for the analysis of the K-ras gene was developed and optimised. Matched normal and tumour DNA from twenty sporadic colon cancer patients was analysed for K-ras mutations using the Glycosylase Mediated Polymorphism Detection technique. Five mutations of the K-ras gene were detected using this technology. Sequencing analysis verified the presence of the mutations and SSCP analysis of the same samples did not identify any additional mutations. The GMPD technology proved to be highly sensitive, accurate and efficient in the identification of K-ras gene mutations. In order to investigate the role of the replication error phenomenon in Irish colon cancer, 3 polyA tract repeat loci were analysed. The repeat loci included a 10 bp intragenic repeat of the TGF-β-RII gene. TGF-β-RII is involved in the TGF-β epithelial cell growth pathway and mutation of the gene is thought to play a role in cell proliferation and tumorigenesis. Due to the presence of a repeat sequence within the gene, TGFB-RII defects are associated with tumours that display the replication error phenomenon. Analysis of the TGF-β-RII 10 bp repeat failed to identify mutations in any colon cancer patients. Analysis of the Bat26 and Bat 40 polyA repeat sequences in the sporadic and HNPCC families revealed that instability is associated with HNPCC tumours harbouring mismatch repair defects and with 20 % of sporadic colon cancer tumours. No correlation between K-ras gene mutations and the RER+ phenotype was detected in sporadic colon cancer tumours.
Resumo:
PTEN‐induced kinase 1 (PINK1) was identified initially in cancer cells as a gene up‐regulated by overexpression of the central tumour suppressor, PTEN. Loss‐of‐function mutations in PINK1 were discovered subsequently to cause autosomal recessive Parkinsonʹs disease (ARPD). Despite much research focusing on the proposed mechanism(s) through which loss of PINKI function causes neurodegeneration, few studies have focused on a direct role for this serine/threonine kinase in cancer biology. The focus of this thesis was to examine a direct role for PINK1 function in tumourigenesis. Initial studies showed that loss of PINK1 reduces tumour‐associated phenotypes including cell growth, colony formation and invasiveness, in several cell types in vitro, indicating a pro‐tumourigenic role for PINK1 in cancer. Furthermore, results revealed for the first time that PINK1 deletion, examined in mouse embryonic fibroblasts (MEFS) from PINK1 knock‐out animals, causes cell cycle defects, whereby cells arrest at in cytokinesis, giving rise to a highly significant increase in the number of multinucleated cells. This results in several key changes in the expression profile of cell cycle associated protein. In addition, PINK1‐deficient MEFs were found to resist cell cycle exit, with a proportion of cells remaining in proliferative phases upon removal of serum. The ability of cells to progress through mitosis conferred by PINK1 expression was independent of its kinase activity, while the cell cycle exit following serum withdrawal was kinase dependent. Investigations into the mechanism through which loss of PINK1 function gives rise to cell cycle defects revealed that dynamin related protein 1 (Drp1)‐mediated mitochondrial fission is enhanced in PINK1‐ deficient MEFs, and that increased expression of Drp1 on mitochondria and activation of Drp1 is highly significant in PINK1‐deficient multinucleated cells. Deregulated and increased levels and activation of mitochondrial fission via Drp1 was shown to be a major feature of cell cycle defects caused by PINK1 deletion, both during progression through G2/M and cell cycle exit following serum removal. Altered PINK1 localisation was also observed during progression of mitosis, and upon serum deprivation. Thus, PINK1 dissociated from the mitochondria during the mitotic phases and localised to mitochondria upon serum withdrawal. During serum withdrawal deletion of PINK1 disabled the ability of MEFs to increase mitochondrial membrane potential (ΔΨm), and increase autophagy. This was co‐incident with increased mitochondrial fission, and increased localisation of Drp1 to mitochondria following serum deprivation. Together, this indicates an inability of PINK1‐negative cells to respond protectively to this stress‐induced state, primarily via impaired mitochondrial function. In contrast, PINK1 overexpression was found to protect cells from DNA damage following treatment with oxidants. In addition, deletion of PINK1 blocked the ability of cells to re‐enter the cell cycle in response to insulin‐like growth factor‐1 (IGF‐1), a major cancer promoting agonistwhich acts primarily via PI3‐kinase/Akt activation. Furthermore, PINK1 mRNA expression was significantly increased following serum deprivation of MCF‐7 cells, and this was rendered more significant upon additional inhibition of PI3‐kinase. Conversely, IGF‐1 activation of PI3‐kinase/Akt causes a time‐dependent and significant reduction of PINK1 mRNA expression that was PI3‐kinase dependent. Together these results indicate that PINK1 expression is necessary for IGF‐1 signalling and is regulated reciprocally in the absence and presence of IGF‐1, via PI3‐kinase/Akt, a signalling system which has major tumour‐promoting capacity in cancer cell biology. The results of this thesis indicate PINK1 is a candidate tumour-promoting gene which has a significant function in the regulation of the cell cycle, and growth factor responses, at key cell cycle checkpoints, namely, during progression through G2/M and during exit of the cell cycle following removal of serum. Furthermore, the results reveal that the regulation of mitochondrial fission and Drp1 function is mechanistically important in the regulation of cell cycle control by PINK1. As deregulation of the cell cycle is linked to both tumourigenesis and neurodegeneration, the findings of this thesis are of importance not just for understanding cancer biology, but also in the context of PINK1‐associated neurodegeneration.
Resumo:
Glycolysis, glutaminolysis, the Krebs cycle and oxidative phosphorylation are the main metabolic pathways. Exposing cells to key metabolic substrates (glucose, glutamine and pyruvate); investigation of the contribution of substrates in stress conditions such as uncoupling and hypoxia was conducted. Glycolysis, O2 consumption, O2 and ATP levels and hypoxia inducible factor (HIF) signalling in PC12 cells were investigated. Upon uncoupling with FCCP mitochondria were depolarised similarly in all cases, but a strong increase in respiration was only seen in the cells fed on glutamine with either glucose or pyruvate. Inhibition of glutaminolysis reversed the glutamine dependant effect. Differential regulation of the respiratory response to FCCP by metabolic environment suggests mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function. At reduced O2 availability (4 % and 0 % O2), cell bioenergetics and local oxygenation varied depending on the substrate composition. Results indicate that both supply and utilisation of key metabolic substrates can affect the pattern of HIF-1/2α accumulation by differentially regulating iO2¬, ATP levels and Akt/Erk/AMPK pathways. Inhibition of key metabolic pathways can modulate HIF regulatory pathways, metabolic responses and survival of cancer cells in hypoxia. Hypoxia leads to transcriptional activation, by HIF, of pyruvate dehydrogenase (PDH) kinase which phosphorylates and inhibits PDH, a mitochondrial enzyme that converts pyruvate into acetyl-CoA. The levels of PDH (total and phosphorylated), PDH kinase and HIF-1α were analysed in HCT116 and HCT116 SCO2-/- (deficient in complex IV of the respiratory chain) grown under 20.9 % and 3 % O2. Data indicate that regulation of PDH can occur in a manner independent of the HIF-1/PDH kinase 1 axis, mitochondrial respiration and the demand for acetyl-CoA. Collectively these results can be applied to many diseases; reduced nutrient supply and O2 during ischemia/stroke, hypoglycaemia in diabetes mellitus and cancer associated changes in uncoupling protein expression levels.