3 resultados para Clustering Analysis
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
An Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) was deployed to investigate the size-resolved chemical composition of single particles at an urban background site in Paris, France, as part of the MEGAPOLI winter campaign in January/February 2010. ATOFMS particle counts were scaled to match coincident Twin Differential Mobility Particle Sizer (TDMPS) data in order to generate hourly size-resolved mass concentrations for the single particle classes observed. The total scaled ATOFMS particle mass concentration in the size range 150–1067 nm was found to agree very well with the sum of concurrent High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and Multi-Angle Absorption Photometer (MAAP) mass concentration measurements of organic carbon (OC), inorganic ions and black carbon (BC) (R2 = 0.91). Clustering analysis of the ATOFMS single particle mass spectra allowed the separation of elemental carbon (EC) particles into four classes: (i) EC attributed to biomass burning (ECbiomass), (ii) EC attributed to traffic (ECtraffic), (iii) EC internally mixed with OC and ammonium sulfate (ECOCSOx), and (iv) EC internally mixed with OC and ammonium nitrate (ECOCNOx). Average hourly mass concentrations for EC-containing particles detected by the ATOFMS were found to agree reasonably well with semi-continuous quantitative thermal/optical EC and optical BC measurements (r2 = 0.61 and 0.65–0.68 respectively, n = 552). The EC particle mass assigned to fossil fuel and biomass burning sources also agreed reasonably well with BC mass fractions assigned to the same sources using seven-wavelength aethalometer data (r2 = 0.60 and 0.48, respectively, n = 568). Agreement between the ATOFMS and other instrumentation improved noticeably when a period influenced by significantly aged, internally mixed EC particles was removed from the intercomparison. 88% and 12% of EC particle mass was apportioned to fossil fuel and biomass burning respectively using the ATOFMS data compared with 85% and 15% respectively for BC estimated from the aethalometer model. On average, the mass size distribution for EC particles is bimodal; the smaller mode is attributed to locally emitted, mostly externally mixed EC particles, while the larger mode is dominated by aged, internally mixed ECOCNOx particles associated with continental transport events. Periods of continental influence were identified using the Lagrangian Particle Dispersion Model (LPDM) "FLEXPART". A consistent minimum between the two EC mass size modes was observed at approximately 400 nm for the measurement period. EC particles below this size are attributed to local emissions using chemical mixing state information and contribute 79% of the scaled ATOFMS EC particle mass, while particles above this size are attributed to continental transport events and contribute 21% of the EC particle mass. These results clearly demonstrate the potential benefit of monitoring size-resolved mass concentrations for the separation of local and continental EC emissions. Knowledge of the relative input of these emissions is essential for assessing the effectiveness of local abatement strategies.
Resumo:
Understanding the impact of atmospheric black carbon (BC) containing particles on human health and radiative forcing requires knowledge of the mixing state of BC, including the characteristics of the materials with which it is internally mixed. In this study, we demonstrate for the first time the capabilities of the Aerodyne Soot-Particle Aerosol Mass Spectrometer equipped with a light scattering module (LS-SP-AMS) to examine the mixing state of refractory BC (rBC) and other aerosol components in an urban environment (downtown Toronto). K-means clustering analysis was used to classify single particle mass spectra into chemically distinct groups. One resultant cluster is dominated by rBC mass spectral signals (C+1 to C+5) while the organic signals fall into a few major clusters, identified as hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), and cooking emission organic aerosol (COA). A nearly external mixing is observed with small BC particles only thinly coated by HOA ( 28% by mass on average), while over 90% of the HOA-rich particles did not contain detectable amounts of rBC. Most of the particles classified into other inorganic and organic clusters were not significantly associated with BC. The single particle results also suggest that HOA and COA emitted from anthropogenic sources were likely major contributors to organic-rich particles with low to mid-range aerodynamic diameter (dva). The similar temporal profiles and mass spectral features of the organic clusters and the factors from a positive matrix factorization (PMF) analysis of the ensemble aerosol dataset validate the conventional interpretation of the PMF results.
Resumo:
Two concepts in rural economic development policy have been the focus of much research and policy action: the identification and support of clusters or networks of firms and the availability and adoption by rural businesses of Information and Communication Technologies (ICT). From a theoretical viewpoint these policies are based on two contrasting models, with clustering seen as a process of economic agglomeration, and ICT-mediated communication as a means of facilitating economic dispersion. The study’s conceptual framework is based on four interrelated elements: location, interaction, knowledge, and advantage, together with the concept of networks which is employed as an operationally and theoretically unifying concept. The research questions are developed in four successive categories: Policy, Theory, Networks, and Method. The questions are approached using a study of two contrasting groups of rural small businesses in West Cork, Ireland: (a) Speciality Foods, and (b) firms in Digital Products and Services. The study combines Social Network Analysis (SNA) with Qualitative Thematic Analysis, using data collected from semi-structured interviews with 58 owners or managers of these businesses. Data comprise relational network data on the firms’ connections to suppliers, customers, allies and competitors, together with linked qualitative data on how the firms established connections, and how tacit and codified knowledge was sourced and utilised. The research finds that the key characteristics identified in the cluster literature are evident in the sample of Speciality Food businesses, in relation to flows of tacit knowledge, social embedding, and the development of forms of social capital. In particular the research identified the presence of two distinct forms of collective social capital in this network, termed “community” and “reputation”. By contrast the sample of Digital Products and Services businesses does not have the form of a cluster, but matches more closely to dispersive models, or “chain” structures. Much of the economic and social structure of this set of firms is best explained in terms of “project organisation”, and by the operation of an individual rather than collective form of “reputation”. The rural setting in which these firms are located has resulted in their being service-centric, and consequently they rely on ICT-mediated communication in order to exchange tacit knowledge “at a distance”. It is this factor, rather than inputs of codified knowledge, that most strongly influences their operation and their need for availability and adoption of high quality communication technologies. Thus the findings have applicability in relation to theory in Economic Geography and to policy and practice in Rural Development. In addition the research contributes to methodological questions in SNA, and to methodological questions about the combination or mixing of quantitative and qualitative methods.