3 resultados para Classical Solutions

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For two multinormal populations with equal covariance matrices the likelihood ratio discriminant function, an alternative allocation rule to the sample linear discriminant function when n1 ≠ n2 ,is studied analytically. With the assumption of a known covariance matrix its distribution is derived and the expectation of its actual and apparent error rates evaluated and compared with those of the sample linear discriminant function. This comparison indicates that the likelihood ratio allocation rule is robust to unequal sample sizes. The quadratic discriminant function is studied, its distribution reviewed and evaluation of its probabilities of misclassification discussed. For known covariance matrices the distribution of the sample quadratic discriminant function is derived. When the known covariance matrices are proportional exact expressions for the expectation of its actual and apparent error rates are obtained and evaluated. The effectiveness of the sample linear discriminant function for this case is also considered. Estimation of true log-odds for two multinormal populations with equal or unequal covariance matrices is studied. The estimative, Bayesian predictive and a kernel method are compared by evaluating their biases and mean square errors. Some algebraic expressions for these quantities are derived. With equal covariance matrices the predictive method is preferable. Where it derives this superiority is investigated by considering its performance for various levels of fixed true log-odds. It is also shown that the predictive method is sensitive to n1 ≠ n2. For unequal but proportional covariance matrices the unbiased estimative method is preferred. Product Normal kernel density estimates are used to give a kernel estimator of true log-odds. The effect of correlation in the variables with product kernels is considered. With equal covariance matrices the kernel and parametric estimators are compared by simulation. For moderately correlated variables and large dimension sizes the product kernel method is a good estimator of true log-odds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The class of all Exponential-Polynomial-Trigonometric (EPT) functions is classical and equal to the Euler-d’Alembert class of solutions of linear differential equations with constant coefficients. The class of non-negative EPT functions defined on [0;1) was discussed in Hanzon and Holland (2010) of which EPT probability density functions are an important subclass. EPT functions can be represented as ceAxb, where A is a square matrix, b a column vector and c a row vector where the triple (A; b; c) is the minimal realization of the EPT function. The minimal triple is only unique up to a basis transformation. Here the class of 2-EPT probability density functions on R is defined and shown to be closed under a variety of operations. The class is also generalised to include mixtures with the pointmass at zero. This class coincides with the class of probability density functions with rational characteristic functions. It is illustrated that the Variance Gamma density is a 2-EPT density under a parameter restriction. A discrete 2-EPT process is a process which has stochastically independent 2-EPT random variables as increments. It is shown that the distribution of the minimum and maximum of such a process is an EPT density mixed with a pointmass at zero. The Laplace Transform of these distributions correspond to the discrete time Wiener-Hopf factors of the discrete time 2-EPT process. A distribution of daily log-returns, observed over the period 1931-2011 from a prominent US index, is approximated with a 2-EPT density function. Without the non-negativity condition, it is illustrated how this problem is transformed into a discrete time rational approximation problem. The rational approximation software RARL2 is used to carry out this approximation. The non-negativity constraint is then imposed via a convex optimisation procedure after the unconstrained approximation. Sufficient and necessary conditions are derived to characterise infinitely divisible EPT and 2-EPT functions. Infinitely divisible 2-EPT density functions generate 2-EPT Lévy processes. An assets log returns can be modelled as a 2-EPT Lévy process. Closed form pricing formulae are then derived for European Options with specific times to maturity. Formulae for discretely monitored Lookback Options and 2-Period Bermudan Options are also provided. Certain Greeks, including Delta and Gamma, of these options are also computed analytically. MATLAB scripts are provided for calculations involving 2-EPT functions. Numerical option pricing examples illustrate the effectiveness of the 2-EPT approach to financial modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase-locked loops (PLLs) are a crucial component in modern communications systems. Comprising of a phase-detector, linear filter, and controllable oscillator, they are widely used in radio receivers to retrieve the information content from remote signals. As such, they are capable of signal demodulation, phase and carrier recovery, frequency synthesis, and clock synchronization. Continuous-time PLLs are a mature area of study, and have been covered in the literature since the early classical work by Viterbi [1] in the 1950s. With the rise of computing in recent decades, discrete-time digital PLLs (DPLLs) are a more recent discipline; most of the literature published dates from the 1990s onwards. Gardner [2] is a pioneer in this area. It is our aim in this work to address the difficulties encountered by Gardner [3] in his investigation of the DPLL output phase-jitter where additive noise to the input signal is combined with frequency quantization in the local oscillator. The model we use in our novel analysis of the system is also applicable to another of the cases looked at by Gardner, that is the DPLL with a delay element integrated in the loop. This gives us the opportunity to look at this system in more detail, our analysis providing some unique insights into the variance `dip' seen by Gardner in [3]. We initially provide background on the probability theory and stochastic processes. These branches of mathematics are the basis for the study of noisy analogue and digital PLLs. We give an overview of the classical analogue PLL theory as well as the background on both the digital PLL and circle map, referencing the model proposed by Teplinsky et al. [4, 5]. For our novel work, the case of the combined frequency quantization and noisy input from [3] is investigated first numerically, and then analytically as a Markov chain via its Chapman-Kolmogorov equation. The resulting delay equation for the steady-state jitter distribution is treated using two separate asymptotic analyses to obtain approximate solutions. It is shown how the variance obtained in each case matches well to the numerical results. Other properties of the output jitter, such as the mean, are also investigated. In this way, we arrive at a more complete understanding of the interaction between quantization and input noise in the first order DPLL than is possible using simulation alone. We also do an asymptotic analysis of a particular case of the noisy first-order DPLL with delay, previously investigated by Gardner [3]. We show a unique feature of the simulation results, namely the variance `dip' seen for certain levels of input noise, is explained by this analysis. Finally, we look at the second-order DPLL with additive noise, using numerical simulations to see the effects of low levels of noise on the limit cycles. We show how these effects are similar to those seen in the noise-free loop with non-zero initial conditions.