2 resultados para Cis-acting regulatory variants
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Recoding embraces mechanisms that augment the rules of standard genetic decoding. The deviations from standard decoding are often purposeful and their realisation provides diverse and flexible regulatory mechanisms. Recoding events such as programed ribosomal frameshifting are especially plentiful in viruses. In most organisms only a few cellular genes are known to employ programed ribosomal frameshifting in their expression. By far the most prominent and therefore well-studied case of cellular +1 frameshifting is in expression of antizyme mRNAs. The protein antizyme is a key regulator of polyamine levels in most eukaryotes with some exceptions such as plants. A +1 frameshifting event is required for the full length protein to be synthesized and this requirement is a conserved feature of antizyme mRNAs from yeast to mammals. The efficiency of the frameshifting event is dependent on the free polyamine levels in the cell. cis-acting elements in antizyme mRNAs such as specific RNA structures are required to stimulate the frameshifting efficiency. Here I describe a novel stimulator of antizyme +1 frameshifting in the Agaricomycotina class of Basidiomycete fungi. It is a nascent peptide that acts from within the ribosome exit tunnel to stimulate frameshifting efficiency in response to polyamines. The interactions of the nascent peptide with components of the peptidyl transferase centre and the protein exit tunnel emerge in our understanding as powerful means which the cell employs for monitoring and tuning the translational process. These interactions can modulate the rate of translation, protein cotranslational folding and localization. Some nascent peptides act in concert with small molecules such as polyamines or antibiotics to stall the ribosome. To these known nascent peptide effects we have added that of a stimulatory effect on the +1 frameshifting in antizyme mRNAs. It is becoming evident that nascent peptide involvement in regulation of translation is a much more general phenomenon than previously anticipated.
Resumo:
The full virulence of Xanthomonas campestris pv. campestris (Xcc) to plants depends upon cell-to-cell signalling mediated by the signal molecule DSF (for diffusible signal factor), that has been characterised as cis-11-methyl-2-dodecenoic acid. DSF-mediated signalling regulates motility, biofilm dynamics and the synthesis of particular virulence determinants. The synthesis and perception of the DSF signal molecule involves products of the rpf (regulation of pathogenicity factors) gene cluster. DSF synthesis is fully dependent on RpfF, which encodes a putative enoyl-CoA hydratase. A two-component system, comprising the complex sensor histidine kinase RpfC and the HD-GYP domain regulator RpfG, is implicated in DSF perception. The HD-GYP domain of RpfG is a phosphodiesterase working on cyclic di-GMP; DSF perception is thereby linked to the turnover of this intracellular second messenger. The full range of regulatory influences of the Rpf/DSF system and of cyclic di-GMP in Xcc has yet to be established. In order to further characterise the Rpf/DSF regulatory network in Xcc, a proteomic approach was used to compare protein expression in the wildtype and defined rpf mutants. This work shows that the Rpf/DSF system regulates a range of biological functions that are associated with virulence and biofilm formation but also reveals new functions mediated by DSF regulation. These functions include antibiotic resistance, detoxification and stress tolerance. Mutational analysis showed that several of these regulated protein functions contribute to virulence in Chinese radish. Interestingly, it was demonstrated that different patterns of protein expression are associated with mutations of rpfF, rpfC and rpfG. This suggests that RpfG and RpfC have broader roles in regulation other than perception and transduction of DSF. Taken together, this analysis indicates the broad and complex regulatory role of Rpf/DSF system and identifies a number of new functions under Rpf/DSF control, which were shown to play a role in virulence.