3 resultados para Chip Stewart
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The objective of this paper is to investigate the effect of the pad size ratio between the chip and board end of a solder joint on the shape of that solder joint in combination with the solder volume available. The shape of the solder joint is correlated to its reliability and thus of importance. For low density chip bond pad applications Flip Chip (FC) manufacturing costs can be kept down by using larger size board pads suitable for solder application. By using “Surface Evolver” software package the solder joint shapes associated with different size/shape solder preforms and chip/board pad ratios are predicted. In this case a so called Flip-Chip Over Hole (FCOH) assembly format has been used. Assembly trials involved the deposition of lead-free 99.3Sn0.7Cu solder on the board side, followed by reflow, an underfill process and back die encapsulation. During the assembly work pad off-sets occurred that have been taken into account for the Surface Evolver solder joint shape prediction and accurately matched the real assembly. Overall, good correlation was found between the simulated solder joint shape and the actual fabricated solder joint shapes. Solder preforms were found to exhibit better control over the solder volume. Reflow simulation of commercially available solder preform volumes suggests that for a fixed stand-off height and chip-board pad ratio, the solder volume value and the surface tension determines the shape of the joint.
A simulation-based design method to transfer surface mount RF system to flip-chip die implementation
Resumo:
The flip-chip technology is a high chip density solution to meet the demand for very large scale integration design. For wireless sensor node or some similar RF applications, due to the growing requirements for the wearable and implantable implementations, flip-chip appears to be a leading technology to realize the integration and miniaturization. In this paper, flip-chip is considered as part of the whole system to affect the RF performance. A simulation based design is presented to transfer the surface mount PCB board to the flip-chip die package for the RF applications. Models are built by Q3D Extractor to extract the equivalent circuit based on the parasitic parameters of the interconnections, for both bare die and wire-bonding technologies. All the parameters and the PCB layout and stack-up are then modeled in the essential parts' design of the flip-chip RF circuit. By implementing simulation and optimization, a flip-chip package is re-designed by the parameters given by simulation sweep. Experimental results fit the simulation well for the comparison between pre-optimization and post-optimization of the bare die package's return loss performance. This design method could generally be used to transfer any surface mount PCB to flip-chip package for the RF systems or to predict the RF specifications of a RF system using the flip-chip technology.
Resumo:
Technological developments in biomedical microsystems are opening up new opportunities to improve healthcare procedures. Swallowable diagnostic sensing capsules are an example of these. In none of the diagnostic sensing capsules, is the sensor’s first level packaging achieved via Flip Chip Over Hole (FCOH) method using Anisotropic Conductive Adhesive (ACA). In a capsule application with direct access sensor (DAS), ACA not only provides the electrical interconnection but simultaneously seals the interconnect area and the underlying electronics. The development showed that the ACA FCOH was a viable option for the DAS interconnection. Adequate adhesive formed a strong joint that withstood a shear stress of 120N/mm2 and a compressive stress of 6N required to secure the final sensor assembly in place before encapsulation. Electrical characterization of the ACA joint in a fluid environment showed that the ACA was saturated with moisture and that the ions in the solution actively contributed to the leakage current, characterized by the varying rate of change of conductance. Long term hygrothermal aging of the ACA joint showed that a thermal strain of 0.004 and a hygroscopic strain of 0.0052 were present and resulted in a fatigue like process. In-vitro tests showed that high temperature and acidity had a deleterious effect of the ACA and its joint. It also showed that the ACA contact joints positioned at around or over 1mm would survive the gastrointestinal (GI) fluids and would be able to provide a reliable contact during the entire 72hr of the GI transit time. A final capsule demonstrator was achieved by successfully integrating the DAS, the battery and the final foldable circuitry into a glycerine capsule. Final capsule soak tests suggested that the silicone encapsulated system could survive the 72hr gut transition.