2 resultados para Chamber of Commerce of Minneapolis
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Mercury is a potent neurotoxin even at low concentrations. The unoxidised metal has a high vapour pressure and can circulate through the atmosphere, but when oxidised can deposit and be accumulated through the food chain. This work aims to investigate the oxidation processes of atmospheric Hg0(g). The first part describes efforts to make a portable Hg sensor based on Cavity Enhanced Absorption Spectroscopy (CEAS). The detection limit achieved was 66 ngm−3 for a 10 second averaging time. The second part of this work describes experiments carried out in a temperature controlled atmospheric simulation chamber in the Desert Research Institute, Reno, Nevada, USA. The chamber was built around an existing Hg CRDS system that could measure Hg concentrations in the chamber of<100 ngm−3 at 1 Hz enabling reactions to be followed. The main oxidant studied was bromine, which was quantified with a LED based CEAS system across the chamber. Hg oxidation in the chamber was found to be mostly too slow for current models to explain. A seven reaction model was developed and tested to find which parameters were capable of explaining the deviation. The model was overdetermined and no unique solution could be found. The most likely possibility was that the first oxidation step Hg + Br →HgBr was slower than the preferred literature value by a factor of two. However, if the more uncertain data at low [Br2] was included then the only parameter that could explain the experiments was a fast, temperature independent dissociation of HgBr some hundreds of times faster than predicted thermolysis or photolysis rates. Overall this work concluded that to quantitatively understand the reaction of Hg with Br2, the intermediates HgBr and Br must be measured. This conclusion will help to guide the planning of future studies of atmospheric Hg chemistry.
Resumo:
A detailed series of simulation chamber experiments has been performed on the atmospheric degradation pathways of the primary air pollutant naphthalene and two of its photooxidation products, phthaldialdehyde and 1-nitronaphthalene. The measured yields of secondary organic aerosol (SOA) arising from the photooxidation of naphthalene varied from 6-20%, depending on the concentrations of naphthalene and nitrogen oxides as well as relative humidity. A range of carbonyls, nitro-compounds, phenols and carboxylic acids were identified among the gas- and particle-phase products. On-line analysis of the chemical composition of naphthalene SOA was performed using aerosol time-of-flight mass spectrometry (ATOFMS) for the first time. The results indicate that enhanced formation of carboxylic acids may contribute to the observed increase in SOA yields at higher relative humidity. The photolysis of phthaldialdehyde and 1-nitronaphthalene was investigated using natural light at the European Photoreactor (EUPHORE) in Valencia, Spain. The photolysis rate coefficients were measured directly and used to confirm that photolysis is the major atmospheric loss process for these compounds. For phthaldialdehyde, the main gas-phase products were phthalide and phthalic anhydride. SOA yields in the range 2-11% were observed, with phthalic acid and dihydroxyphthalic acid identified among the particle phase products. The photolysis of 1-nitronaphthalene yielded nitric oxide and a naphthoxy radical which reacted to form several products. SOA yields in the range 57-71% were observed, with 1,4-naphthoquinone, 1-naphthol and 1,4-naphthalenediol identified in the particle phase. On-line analysis of the SOA generated in an indoor chamber using ATOFMS provided evidence for the formation of high-molecular-weight products. Further investigations revealed that these products are oxygenated polycyclic compounds most likely produced from the dimerization of naphthoxy radicals. These results of this work indicate that naphthalene is a potentially large source of SOA in urban areas and should be included in atmospheric models. The kinetic and mechanistic information could be combined with existing literature data to produce an overall degradation mechanism for naphthalene suitable for inclusion in photochemical models that are used to predict the effect of emissions on air quality.