3 resultados para Cell design
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The concept of a biofuel cell takes inspiration from the natural capability of biological systems to catalyse the conversion of organic matter with a subsequent release of electrical energy. Enzymatic biofuel cells are intended to mimic the processes occurring in nature in a more controlled and efficient manner. Traditional fuel cells rely on the use of toxic catalysts and are often not easily miniaturizable making them unsuitable as implantable power sources. Biofuel cells however use highly selective protein catalysts and renewable fuels. As energy consumption becomes a global issue, they emerge as important tools for energy generation. The microfluidic platforms developed are intended to maximize the amount of electrical energy extracted from renewable fuels which are naturally abundant in the environment and in biological fluids. Combining microfabrication processes, chemical modification and biological surface patterning these devices are promising candidates for micro-power sources for future life science and electronic applications. This thesis considered four main aspects of a biofuel cell research. Firstly, concept of a miniature compartmentalized enzymatic biofuel cell utilizing simple fuels and operating in static conditions is verified and proves the feasibility of enzyme catalysis in energy conversion processes. Secondly, electrode and microfluidic channel study was performed through theoretical investigations of the flow and catalytic reactions which also improved understanding of the enzyme kinetics in the cell. Next, microfluidic devices were fabricated from cost-effective and disposable polymer materials, using the state-of-the-art micro-processing technologies. Integration of the individual components is difficult and multiple techniques to overcome these problems have been investigated. Electrochemical characterization of gold electrodes modified with Nanoporous Gold Structures is also performed. Finally, two strategies for enzyme patterning and encapsulation are discussed. Several protein catalysts have been effectively immobilized on the surface of commercial and microfabricated electrodes by electrochemically assisted deposition in sol-gel and poly-(o-phenylenediamine) polymer matrices and characterised with confirmed catalytic activity.
Resumo:
This thesis describes work carried out on the design of new routes to a range of bisindolylmaleimide and indolo[2,3-a]carbazole analogs, and investigation of their potential as successful anti-cancer agents. Following initial investigation of classical routes to indolo[2,3-a]pyrrolo[3,4-c]carbazole aglycons, a new strategy employing base-mediated condensation of thiourea and guanidine with a bisindolyl β-ketoester intermediate afforded novel 5,6-bisindolylpyrimidin-4(3H)-ones in moderate yields. Chemical diversity within this H-bonding scaffold was then studied by substitution with a panel of biologically relevant electrophiles, and by reductive desulfurisation. Optimisation of difficult heterogeneous literature conditions for oxidative desulfurisation of thiouracils was also accomplished, enabling a mild route to a novel 5,6-bisindolyluracil pharmacophore to be developed within this work. The oxidative cyclisation of selected acyclic bisindolyl systems to form a new planar class of indolo[2,3-a]pyrimido[5,4-c]carbazoles was also investigated. Successful conditions for this transformation, as well as the limitations currently prevailing for this approach are discussed. Synthesis of 3,4-bisindolyl-5-aminopyrazole as a potential isostere of bisindolylmaleimide agents was encountered, along with a comprehensive derivatisation study, in order to probe the chemical space for potential protein backbone H-bonding interactions. Synthesis of a related 3,4-arylindolyl-5-aminopyrazole series was also undertaken, based on identification of potent kinase inhibition within a closely related heterocyclic template. Following synthesis of approximately 50 novel compounds with a diversity of H-bonding enzyme-interacting potential within these classes, biological studies confirmed that significant topo II inhibition was present for 9 lead compounds, in previously unseen pyrazolo[1,5-a]pyrimidine, indolo[2,3-c]carbazole and branched S,N-disubstituted thiouracil derivative series. NCI-60 cancer cell line growth inhibition data for 6 representative compounds also revealed interesting selectivity differences between each compound class, while a new pyrimido[5,4-c]carbazole agent strongly inhibited cancer cell division at 10 µM, with appreciable cytotoxic activity observed across several tumour types.
Resumo:
This thesis describes work carried out on the synthesis of novel 5- and 11-substituted ellipticines and derivatives of the ellipticine analogues, isoellipticine and deazaellipticine, followed by investigation of their potential as anti-cancer agents. Preparation of the key 5- and 11-substituted ellipticine targets involved the development of regiospecific, sequential alkylation reactions with alkenyllithium and Grignard reagents. Investigation of these novel reactions resulted in a new route towards 5-substituted ellipticines via Grignard reaction with vinylmagnesium bromide. These novel 5-vinylellipticine derivatives were further functionalised in an ozonolysis reaction, followed by oxidation to give a range of novel 5-substituted ellipticines. Less success was encountered in the 11-substituted ellipticine series, however preparation of these derivatives using a previously published route was accomplished, and the resulting 11-formylellipticine was further derivatised to give a panel of novel 9- and 11-substituted ellipticines, incorporating amide, carboxylate, imine and amine functionality. The successful route towards 5-substituted ellipticines was applied to the preparation of a range of novel 11-substituted isoellipticines and 6-substituted deazaellipticines, the first time substantial synthesis has been undertaken with these analogues. In addition to this, the first preparation of isoellipticinium salts is described, and a panel of novel isoellipticinium, 7 formylisoellipticinium and 7-hydroxyisoellipticinium salts were synthesised in good yields. Biological evaluation of a panel of 43 novel ellipticine, isoellipticine and deazaellipticine derivatives was accomplished with a topoisomerase II decatenation assay and submission to the NCI 60-cell line screen. Four novel isoellipticine topoisomerase II inhibitors were identified from the decatenation assay, with strong activity at 10 μM. In addition to this, NCI screening identified five highly cytotoxic ellipticine and isoellipticine compounds with remarkable selectivity profiles for different cancer types. These novel lead compounds represent new templates for further research and synthesis.