6 resultados para Cattle - Diseases - Epidemiology
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
Background: Most cardiovascular disease (CVD) occurs in the presence of traditional risk factors, including hypertension and dyslipidemia, and these in turn are influenced by behavioural factors such as diet and lifestyle. Previous research has identified a group at low risk of CVD based on a cluster of inter-related factors: body mass index (BMI) < 25 Kg/m2, moderate exercise, alcohol intake, non-smoking and a favourable dietary pattern. The objective of this study was to determine whether these factors are associated with a reduced prevalence of hypertension and dyslipidemia in an Irish adult population. Methods: The study was a cross-sectional survey of 1018 men and women sampled from 17 general practices. Participants completed health, lifestyle and food frequency questionnaires and provided fasting blood samples for analysis of glucose and insulin. We defined a low risk group based on the following protective factors: BMI <25 kg/m2; waist-hip ratio (WHR) <0.85 for women and <0.90 for men; never smoking status; participants with medium to high levels of physical activity; light alcohol consumption (3.5–7 units of alcohol/week) and a "prudent" diet. Dietary patterns were assessed by cluster analysis. Results: We found strong significant inverse associations between the number of protective factors and systolic blood pressure, diastolic blood pressure and dyslipidemia. The prevalence odds ratio of hypertension in persons with 1, 2, 3, ≥ 4 protective factors relative to those with none, were 1.0, 0.76, 0.68 and 0.34 (trend p < 0.01). The prevalence odds ratio of dyslipidemia in persons with 1, 2, 3, ≥ 4 protective factors relative to those with none were 0.83, 0.98, 0.49 and 0.24 (trend p = 0.001). Conclusion: Our findings of a strong inverse association between low risk behaviours and two of the traditional risk factors for CVD highlight the importance of 'the causes of the causes' and the potential for behaviour modification in CVD prevention at a population level.
Resumo:
This study explores the role of livestock insurance to complement existing risk management strategies adopted by smallholder farmers. Using survey data, first, it provides insights into farmers’ risk perception of livestock farming, in terms of likelihood and severity of risk, attitude to risk and their determinants. Second, it examines farmers’ risk management strategies and their determinants. Third, it investigates farmers’ potential engagement with a hypothetical cattle insurance decision and their intensity of participation. Factor analysis is used to analyse risk sources and risk management, multiple regressions are used to identify the determinants; a Heckman model was used to investigate cattle insurance participation and intensity of participation. The findings show different groups of farmers display different risk attitude in their decision-making related to livestock farming. Production risk (especially livestock diseases) was perceived as the most likely and severe source of risk. Disease control was perceived as the best strategy to manage risk overall. Disease control and feed management were important strategies to mitigate the production risks. Disease control and participation on safety net program were found to be important to counter households’ financial risks. With regard to the hypothetical cattle insurance scheme, 94.38% of households were interested to participate in cattle insurance. Of those households that accepted cattle insurance, 77.38% of the households were willing to pay the benchmark annual premium of 4% of the animal value while for the remaining households this was not affordable. The average number of cattle that farmers were willing to insure was 2.71 at this benchmark. Results revealed that income (log income) and education levels influenced positively and significantly farmers’ participation in cattle insurance and the number of cattle to insure. The findings prompt policy makers to consider livestock insurance as a complement to existing risk management strategies to reduce poverty in the long-run.
Resumo:
European badgers (Meles meles) are an important part of the Irish ecosystem; they are a component of Ireland’s native fauna and are afforded protection by national and international laws. The species is also a reservoir host for bovine tuberculosis (bTB) and implicated in the epidemiology of bTB in cattle. Due to this latter point, badgers have been culled in the Republic of Ireland (ROI) in areas where persistent cattle bTB outbreaks exist. The population dynamics of badgers are therefore of great pure and applied interest. The studies within this thesis used large datasets and a number of analytical approaches to uncover essential elements of badger populations in the ROI. Furthermore, a review and meta-analysis of all available data on Irish badgers was completed to give a framework from which key knowledge gaps and future directions could be identified (Chapter 1). One main finding suggested that badger densities are significantly reduced in areas of repeated culling, as revealed through declining trends in signs of activity (Chapter 2) and capture numbers (Chapter 2 and Chapter 3). Despite this, the trappability of badgers was shown to be lower than previously thought. This indicates that management programmes would require repeated long-term efforts to be effective (Chapter 4). Mark-recapture modelling of a population (sample area: 755km2) suggested that mean badger density was typical of continental European populations, but substantially lower than British populations (Chapter 4). Badger movement patterns indicated that most of the population exhibited site fidelity. Long-distance movements were also recorded, the longest of which (20.1km) was the greatest displacement of an Irish badger currently known (Chapter 5). The studies presented in this thesis allows for the development of more robust models of the badger population at national scales (see Future Directions). Through the use of large-scale datasets future models will facilitate informed sustainable planning for disease control.
Resumo:
Yersiniosis is an acute or chronic enteric zoonosis caused by enteropathogenic Yersinia species. Although yersiniosis is predominantly associated with gastroenteric forms of infection, extraintestinal forms are often reported from the elderly or patients with predisposing factors. Yersiniosis is often reported in countries with cold and mild climates (Northern and Central Europe, New Zealand and North of Russian Federation). The Irish Health Protection Surveillance Centre (HPSC) currently records only 3-7 notified cases of yersiniosis per year. At the same time pathogenic Yersinia enterocolitica is recovered from pigs (main source of pathogenic Y. enterocolitica) at the levels similar to that observed in Yersinia endemic countries. Introduction of Yersinia selective culture procedures may increase Yersinia isolation rates. To establish whether the small number of notifications of human disease was an underestimate due to lack of specific selective culture for Yersinia we carried out a prospective culture study of faecal samples from outpatients with diarrhoea, with additional culture of appendix and throat swabs. Higher levels of anti-Yersinia seroprevalence than yersiniosis notification rates in endemic countries suggests that most yersiniosis cases are unrecognised by culture. Subsequently, in addition to a prospective culture study of clinical specimens, we carried out serological screening of Irish blood donors and environmental screening of human sewage. Pathogenic Yersinia strains were not isolated from 1,189 faeces samples, nor from 297 throat swabs, or 23 appendix swabs. This suggested that current low notification rates in Ireland are not due to the lack of specific Yersinia culture procedures. Molecular screening detected a wider variety of Y. enterocolitica-specific targets in pig slurry than in human sewage. A serological survey for antibodies against Yersinia YOP (Yersinia Outer Proteins) proteins in Irish blood donors found antibodies in 25%, with an age-related trend to increased seropositivity, compatible with the hypothesis that yersiniosis may have been more prevalent in Ireland in the recent past. Y. enterocolitica is a heterogeneous group of microorganisms that comprises strains with different degree of pathogenicity. Although non-pathogenic Y. enterocolitica lack conventional virulence factors, these strains can be isolated from patients with diarrhoea. Insecticidal Toxin Complex (ITC) and Cytolethal Distending Toxins can potentially contribute to the virulence of non-pathogenic Y. enterocolitica in the absence of other virulence factors. We compared distribution of ITC and CDT loci among pathogenic and non-pathogenic Y. enterocolitica. Additionally, to demonstrate potential pathogenicity of non-pathogenic Y. enterocolitica we compared their virulence towards Galleria mellonella larvae (a non-mammalian model of human bacterial infections) with the virulence of highly and mildly pathogenic Y. enterocolitica strains. Surprisingly, virulence of pathogenic and non-pathogenic Y. enterocolitica in Galleria mellonella larvae observed at 37°C did not correlate with their pathogenic potential towards humans. Comparative phylogenomic analysis detects predicted coding sequences (CDSs) that define host-pathogen interactions and hence providing insights into molecular evolution of bacterial virulence. Comparative phylogenomic analysis of microarray data generated in Y. enterocolitica strains isolated in the Great Britain from humans with diarrhoea and domestic animals revealed high genetic heterogeneity of these species. Because of the extensive human, animal and food exchanges between the UK and Ireland the objective of this study was to gain further insight into genetic heterogeneity and relationships among clinical and non-clinical Y. enterocolitica strains of various pathogenic potential isolated in Ireland and Great Britain. No evidence of direct transfer of strains between the two countries was found.
Resumo:
Childhood asthma, allergic rhinitis and eczema are complex heterogenic chronic inflammatory allergic disorders which constitute a major burden to children, their families. The prevalence of childhood allergic disorders is increasing worldwide and merely rudimentary understanding exists regarding causality, or the influence of the environment on disease expression. Phase Three of the International Study of Asthma and Allergy in Childhood (ISAAC) reported that Irish adolescents had the 4th highest eczema and rhinoconjunctivitis prevalence and 3rd highest asthma prevalence in the world. There are no ISAAC data pertaining to young Irish children. In 2002, Sturley reported a high prevalence of current asthma in Cork primary school children aged 6-9 years. This thesis comprises of three cross-sectional studies which examined the prevalence of and associations with childhood allergy and a quasi-retrospective cohort study which observed the natural history of allergy from 6-9 until 11-13 years. Although not part of ISAAC, data was attained by parentally completed ISAAC-based questionnaires, using the ISAAC protocol. The prevalence, natural history and risk factors of childhood allergy in Ireland, as described in this thesis, echo those in worldwide allergy research. The variations of prevalence in different populations worldwide and the recurring themes of associations between childhood allergy and microbial exposures, from farming environments and/or gastrointestinal infections, as shown in this thesis, strengthen the mounting evidence that microbial exposure on GALT may hold the key to the mechanisms of allergy development. In this regard, probiotics may be an area of particular interest in allergy modification. Although their effects in relation to allergy, have been investigated now for several years, our knowledge of their diversity, complex functions and interactions with gut microflora, remain rudimentary. Birth cohort studies which include genomic and microbiomic research are recommended in order to examine the underlying mechanisms and the natural course of allergic diseases.
Resumo:
Inflammatory bowel diseases (IBD), encompasses a range of chronic, immune-mediated inflammatory disorders that are usually classified under two major relapsing conditions, Crohn’s Disease (CD) and ulcerative colitis (UC). Extensive studies in the last decades have suggested that the etiology of IBD involves environmental and genetic factors that lead to dysfunction of epithelial barrier with consequent deregulation of the mucosal immune system and inadequate responses to gut microbiota.Over the last decade, the microbial species that has attracted the most attention, with respect to CD etiology, is Eschericia coli. In CD tissue, E. coli antigens have also been identified in macrophages within the lamina propria, granulomas, and in the germinal centres of mesenteric lymph nodes of patients. They have been shown to adhere to and invade intestinal epithelial cells whilst also being able to extensively replicate within macrophages. Through the work of genome-wide association studies (GWAS), there is growing evidence to suggest that the microbial imbalance between commensal and pathogenic bacteria in the gut is aided by a defect in the innate immune system. Autophagy represents a recently investigated pathway that is believed to contribute to the pathogenesis of CD, with studies identified a variant of the autophagy gene, ATG16L1, as a susceptibility gene. The aim of my thesis was to study the cellular and molecular mechanism promoted by E.coli strains in epithelial cells and to assess their contribution to IBD pathology. To achieve this we focused on developing both an in vitro and in vivo model of AIEC infection. This allowed us to further our knowledge on possible mechanisms utilised by AIEC that promoted their survival, as well as developing a better understanding of host reactions. We demonstrate a new survival mechanism promoted by E.coli HM605, whereby it induces the expression of the anti-apoptotic proteins Bcl-XL and BCL2, all of which is exacerbated in an autophagy deficient system. We have also demonstrated the presence of AIEC-induced inflammasome responses in epithelial cells which are exacerbated in an autophagy deficient system and expression of NOD-like receptors (NLRs) which might mediate inflammasome responses in vivo. Finally, we used the Citrobacter rodentium model of infectious colitis to identify Pellino3 as an important mediator in the NOD2 pathway and regulator of intestinal inflammation. In summary, we have developed robust and versatile models of AIEC infection as well as provide new insights into AIEC mediated survival pathways. The collected data provides a new perception into why AIEC bacteria are able to prosper in conditions associated with Crohn’s disease patients with a defect in autophagy.