2 resultados para Cardiac Events

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of γ-secretase protease activities in development, neurogenesis and the immune system are highlighted by the diversity of its substrates and phenotypic characterization of Presenilin (PS)-deficient transgenic animals. Since the discovery of Amyloid precursor protein (APP) and it’s cleavage by γ-secretase complexes, over 90 other type I membrane proteins have been identified as γ-secretase substrates. We have identified interleukin-1 (IL-1) receptor type I (IL-1R1), toll-like receptor 4 (TLR4) and tumour necrosis factor-α (TNFα) receptor-1 (TNFR1) as novel substrates for - secretase cleavage, which play an important role in innate immunity. In this study, using PS-deficient cells and PS-knockout animal models we examined the role of PS proteins, PS1 and PS2, in IL-1R1-, TLR4- and TNFR1- mediated inflammatory responses. Data presented show that in response to IL- 1β, lipopolysaccharide (LPS) or TNFα, immortalised fibroblasts from PS2- deficient animals have diminished production of specific cytokines and chemokine, with differential reduction in nuclear factor-κB (NF-κB) and (mitogen activated protein kinase) MAPK activities. In contrast, no defect in the response to IL-1β, LPS or TNFα was observed in PS1-deficient immortalised fibroblasts. These observations were confirmed using bone marrow-derived macrophages from PS2-null mice, which also display impaired responsiveness to IL-1β- and LPS, with decreased production of inflammatory cytokines. Furthermore, in whole animal in vivo responses, we show that PS2-deficient animals display ligand (IL-1β, LPS and TNFα)-dependent alterations in the production of specific pro-inflammatory cytokines or chemokines. Importantly, this reduced responsiveness to IL-1β, LPS or TNFα is independent of γ- secretase protease activity and γ-secretase cleavage of TNFR1, IL-1R1 or TLR4. These observations suggest a novel γ-secretase-independent role of PS2 in the regulation of innate immune responsiveness and challenge current concepts regarding the regulation of IL-1β-, LPS- and TNFα-mediated immune signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) are currently under investigation as repair agents in the preservation of cardiac function following myocardial infarction (MI). However concerns have emerged regarding the safety of acute intracoronary (IC) MSC delivery specifically related to mortality, micro-infarction and microvascular flow restriction post cell therapy in animal models. This thesis aimed to firstly identify an optimal dose of MSC that could be tolerated when delivered via the coronary artery in a porcine model of acute MI (AMI). Initial dosing studies identified 25x106 MSC to be a safe MSC cell dose, however, angiographic observations from these studies recognised that on delivery of MSC there was a significant adverse decrease in distal blood flow within the artery. This observation along with additional supportive data in the literature (published during the course of this thesis) suggested MSC may be contributing to such adverse events through the propagation of thrombosis. Therefore further studies aimed to investigate the innate prothrombotic activity of MSC. Expression of the initiator of the coagulation cascade initiator tissue factor (TF) on MSC was detected in high levels on the surface of these cells. MSC-derived TF antigen was catalytically active, capable of supporting thrombin generation in vitro and enhancing platelet-driven thrombus deposition on collagen under flow. Infusion of MSC via IC route was associated with a decreased coronary flow reserve when delivered but not when coadministered with an antithrombin agent heparin. Heparin also reduced MSC-associated in situ thrombosis incorporating platelets and VWF in the microvasculature. Heparin-assisted MSC delivery reduced acute apoptosis and significantly improved infarct size, left ventricular ejection fraction, LV volumes, wall motion and scar formation at 6 weeks post AMI. In addition, this thesis investigated the paracrine factors secreted by MSC, in particular focusing on the effect on cardiac repair of a novel MSC-paracrine factor SPARCL1. In summary this work provides new insight into the mechanism by which MSC may be deleterious when delivered by an IC route and a means of abrogating this effect. Moreover we present new data on the MSC secretome with elucidation of the challenges encountered using a single paracrine factor cardiac repair strategy.