3 resultados para Capable Resources
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The technological role of handheld devices is fundamentally changing. Portable computers were traditionally application specific. They were designed and optimised to deliver a specific task. However, it is now commonly acknowledged that future handheld devices need to be multi-functional and need to be capable of executing a range of high-performance applications. This thesis has coined the term pervasive handheld computing systems to refer to this type of mobile device. Portable computers are faced with a number of constraints in trying to meet these objectives. They are physically constrained by their size, their computational power, their memory resources, their power usage, and their networking ability. These constraints challenge pervasive handheld computing systems in achieving their multi-functional and high-performance requirements. This thesis proposes a two-pronged methodology to enable pervasive handheld computing systems meet their future objectives. The methodology is a fusion of two independent and yet complementary concepts. The first step utilises reconfigurable technology to enhance the physical hardware resources within the environment of a handheld device. This approach recognises that reconfigurable computing has the potential to dynamically increase the system functionality and versatility of a handheld device without major loss in performance. The second step of the methodology incorporates agent-based middleware protocols to support handheld devices to effectively manage and utilise these reconfigurable hardware resources within their environment. The thesis asserts the combined characteristics of reconfigurable computing and agent technology can meet the objectives of pervasive handheld computing systems.
Resumo:
Although Common Pool Resources (CPRs) make up a significant share of total income for rural households in Ethiopia and elsewhere in developing world, limited access to these resources and environmental degradation threaten local livelihoods. As a result, the issues of management, governance of CPRs and how to prevent their over-exploitation are of great importance for development policy. This study examines the current state and dynamics of CPRs and overall resource governance system of the Lake Tana sub-basin. This research employed the modified form of Institutional Analysis and Development (IAD) framework. The framework integrates the concept of Socio-Ecological Systems (SES) and Interactive Governance (IG) perspectives where social actors, institutions, the politico-economic context, discourses and ecological features across governance and government levels were considered. It has been observed that overexploitation, degradation and encroachment of CPRs have increased dramatically and this threatens the sustainability of Lake Tana ecosystem. The stakeholder analysis result reveals that there are multiple stakeholders with diverse interest in and power over CPRs. The analysis of institutional arrangements reveals that the existing formal rules and regulations governing access to and control over CPRs could not be implemented and were not effective to legally bind and govern CPR user’s behavior at the operational level. The study also shows that a top-down and non-participatory policy formulation, law and decision making process overlooks the local contexts (local knowledge and informal institutions). The outcomes of examining the participation of local resource users, as an alternative to a centralized, command-and-control, and hierarchical approach to resource management and governance, have called for a fundamental shift in CPR use, management and governance to facilitate the participation of stakeholders in decision making. Therefore, establishing a multi-level stakeholder governance system as an institutional structure and process is necessary to sustain stakeholder participation in decision-making regarding CPR use, management and governance.
Resumo:
The mobile cloud computing model promises to address the resource limitations of mobile devices, but effectively implementing this model is difficult. Previous work on mobile cloud computing has required the user to have a continuous, high-quality connection to the cloud infrastructure. This is undesirable and possibly infeasible, as the energy required on the mobile device to maintain a connection, and transfer sizeable amounts of data is large; the bandwidth tends to be quite variable, and low on cellular networks. The cloud deployment itself needs to efficiently allocate scalable resources to the user as well. In this paper, we formulate the best practices for efficiently managing the resources required for the mobile cloud model, namely energy, bandwidth and cloud computing resources. These practices can be realised with our mobile cloud middleware project, featuring the Cloud Personal Assistant (CPA). We compare this with the other approaches in the area, to highlight the importance of minimising the usage of these resources, and therefore ensure successful adoption of the model by end users. Based on results from experiments performed with mobile devices, we develop a no-overhead decision model for task and data offloading to the CPA of a user, which provides efficient management of mobile cloud resources.