2 resultados para Candida albicans morphology and biofilms

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungal pathogen Candida albicans causes serious nosocomial infections in patients, in part, due to formation of drug-resistant biofilms. Protein kinases (PK) and transcription factors (TF) mediate signal transduction and transcription of proteins involved in biofilm development. To discover biofilm-related PKs, a collection of 63 C. albicans PK mutants was screened twice independently with microtiter plate-based biofilm assay (XTT). Thirty-eight (60%) mutants showed different degrees of biofilm impairment with the poor biofilm formers additionally possessing filamentation defects. Most of these genes were already known to encode proteins associated with Candida morphology and biofilms but VPS15, PKH3, PGA43, IME2 and CEX1, were firstly associated with both processes in this study. Previous studies of Holcombe et al. (2010) had shown that bacterial pathogen, Pseudomonas aeruginosa can impair C. albicans filamentation and biofilm development. To investigate their interaction, the good biofilm former PK mutants of C. albicans were assessed for their response to P. aeruginosa supernatants derived from two strains, wildtype PAO1 and homoserine lactone (HSL)-free mutant ΔQS, without finding any nonresponsive mutants. This suggested that none of the PKs in this study was implicated in Candida-Pseudomonas signaling. To screen promoter sequences for overrepresented TFs across C. albicans gene sets significantly up/downregulated in presence of bacterial supernatants from Holcombe et al. (2010) study, TFbsST database was created online. The TFbsST database integrates experimentally verified TFs of Candida to analyse promoter sequences for TF binding sites. In silico studies predicted that Efg1p was overrepresented in C. albicans and C. parapsilosis RBT family genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.