2 resultados para Calculus of tensors

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transverse trace-free (TT) tensors play an important role in the initial conditions of numerical relativity, containing two of the component freedoms. Expressing a TT tensor entirely, by the choice of two scalar potentials, is not a trivial task however. Assuming the added condition of axial symmetry, expressions are given in both spherical and cylindrical coordinates, for TT tensors in flat space. A coordinate relation is then calculated between the scalar potentials of each coordinate system. This is extended to a non-flat space, though only one potential is found. The remaining equations are reduced to form a second order partial differential equation in two of the tensor components. With the axially symmetric flat space tensors, the choice of potentials giving Bowen-York conformal curvatures, are derived. A restriction is found for the potentials which ensure an axially symmetric TT tensor, which is regular at the origin, and conditions on the potentials, which give an axially symmetric TT tensor with a spherically symmetric scalar product, are also derived. A comparison is made of the extrinsic curvatures of the exact Kerr solution and numerical Bowen-York solution for axially symmetric black hole space-times. The Brill wave, believed to act as the difference between the Kerr and Bowen-York space-times, is also studied, with an approximate numerical solution found for a mass-factor, under different amplitudes of the metric.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A digital differentiator simply involves the derivation of an input signal. This work includes the presentation of first-degree and second-degree differentiators, which are designed as both infinite-impulse-response (IIR) filters and finite-impulse-response (FIR) filters. The proposed differentiators have low-pass magnitude response characteristics, thereby rejecting noise frequencies higher than the cut-off frequency. Both steady-state frequency-domain characteristics and Time-domain analyses are given for the proposed differentiators. It is shown that the proposed differentiators perform well when compared to previously proposed filters. When considering the time-domain characteristics of the differentiators, the processing of quantized signals proved especially enlightening, in terms of the filtering effects of the proposed differentiators. The coefficients of the proposed differentiators are obtained using an optimization algorithm, while the optimization objectives include magnitude and phase response. The low-pass characteristic of the proposed differentiators is achieved by minimizing the filter variance. The low-pass differentiators designed show the steep roll-off, as well as having highly accurate magnitude response in the pass-band. While having a history of over three hundred years, the design of fractional differentiator has become a ‘hot topic’ in recent decades. One challenging problem in this area is that there are many different definitions to describe the fractional model, such as the Riemann-Liouville and Caputo definitions. Through use of a feedback structure, based on the Riemann-Liouville definition. It is shown that the performance of the fractional differentiator can be improved in both the frequency-domain and time-domain. Two applications based on the proposed differentiators are described in the thesis. Specifically, the first of these involves the application of second degree differentiators in the estimation of the frequency components of a power system. The second example concerns for an image processing, edge detection application.