2 resultados para CO-POLYMERS

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is the exploration and characterisation of the nanoscale electronic properties of conjugated polymers and nanocrystals. In Chapter 2, the first application of conducting-probe atomic force microscopy (CP-AFM)-based displacement-voltage (z-V) spectroscopy to local measurement of electronic properties of conjugated polymer thin films is reported. Charge injection thresholds along with corresponding single particle gap and exciton binding energies are determined for a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] thin film. By performing measurements across a grid of locations on the film, a series of exciton binding energy distributions are identified. The variation in measured exciton binding energies is in contrast to the smoothness of the film suggesting that the variation may be attributable to differences in the nano-environment of the polymer molecules within the film at each measurement location. In Chapter 3, the CP-AFM-based z-V spectroscopy method is extended for the first time to local, room temperature measurements of the Coulomb blockade voltage thresholds arising from sequential single electron charging of 28 kDa Au nanocrystal arrays. The fluid-like properties of the nanocrystal arrays enable reproducible formation of nanoscale probe-array-substrate junctions, allowing the influence of background charge on the electronic properties of the array to be identified. CP-AFM also allows complementary topography and phase data to be acquired before and after spectroscopy measurements, enabling comparison of local array morphology with local measurements of the Coulomb blockade thresholds. In Chapter 4, melt-assisted template wetting is applied for the first time to massively parallel fabrication of poly-(3-hexylthiophene) nanowires. The structural characteristics of the wires are first presented. Two-terminal electrical measurements of individual nanowires, utilising a CP-AFM tip as the source electrode, are then used to obtain the intrinsic nanowire resistivity and the total nanowire-electrode contact resistance subsequently allowing single nanowire hole mobility and mean nanowire-electrode barrier height values to be estimated. In Chapter 5, solution-assisted template wetting is used for fabrication of fluorene-dithiophene co-polymer nanowires. The structural characteristics of these wires are also presented. Two-terminal electrical measurements of individual nanowires indicate barrier formation at the nanowire-electrode interfaces and measured resistivity values suggest doping of the nanowires, possibly due to air exposure. The first report of single conjugated polymer nanowires as ultra-miniature photodetectors is presented, with single wire devices yielding external quantum efficiencies ~ 0.1 % and responsivities ~ 0.4 mA/W under monochromatic illumination.