4 resultados para CHEMICAL-STRUCTURE

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the observation of urchin-like nanostructures consisting of high-density spherical nanotube radial arrays of vanadium oxide nanocomposite, successfully synthesized by a simple chemical route using an ethanolic solution of vanadium tri-isopropoxide and alkyl amine hexadecylamine for 7 days at 180oC. The results show that the growth process of the NanoUrchin occurs in stages, starting with a radial self-organized arrangement of lamina followed by the rolling of the lamina into nanotubes. The longest nanotubes are measured to be several micrometers in length with diameters of ~120 nm and hollow centers typically measured to be ~75 nm. The NanoUrchin have an estimated density of nanotubes of ~40 sr-1. The tube walls comprise layers of vanadium oxide with the organic surfactant intercalated between atomic layers. The interlayer distance is measured to be 2.9 ± 0.1 nm and electron diffraction identified the vanadate phase in the VOx nanocomposite as orthorhombic V2O5. These nanostructures may be used as three-dimensional composite materials and as supports for other materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to investigate interactions of components in the high solids systems during storage. The systems included (i) lactose–maltodextrin (MD) with various dextrose equivalents at different mixing ratios, (ii) whey protein isolate (WPI)–oil [olive oil (OO) or sunflower oil (SO)] at 75:25 ratio, and (iii) WPI–oil– {glucose (G)–fructose (F) 1:1 syrup [70% (w/w) total solids]} at a component ratio of 45:15:40. Crystallization of lactose was delayed and increasingly inhibited with increasing MD contents and higher DE values (small molecular size or low molecular weight), although all systems showed similar glass transition temperatures at each aw. The water sorption isotherms of non-crystalline lactose and lactose–MD (0.11 to 0.76 aw) could be derived from the sum of sorbed water contents of individual amorphous components. The GAB equation was fitted to data of all non-crystalline systems. The protein–oil and protein–oil–sugar materials showed maximum protein oxidation and disulfide bonding at 2 weeks of storage at 20 and 40°C. The WPI–OO showed denaturation and preaggregation of proteins during storage at both temperatures. The presence of G–F in WPI–oil increased Tonset and Tpeak of protein aggregation, and oxidative damage of the protein during storage, especially in systems with a higher level of unsaturated fatty acids. Lipid oxidation and glycation products in the systems containing sugar promoted oxidation of proteins, increased changes in protein conformation and aggregation of proteins, and resulted in insolubility of solids or increased hydrophobicity concomitantly with hardening of structure, covalent crosslinking of proteins, and formation of stable polymerized solids, especially after storage at 40°C. We found protein hydration transitions preceding denaturation transitions in all high protein systems and also the glass transition of confined water in protein systems using dynamic mechanical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Herein is presented a novel chemical vapour deposition (CVD) route for the fabrication of oxide ferroelectrics. A versatile layer-by-layer growth mode was developed to prepare naturally super-latticed bismuth based materials belonging to the Aurivillius phase family, with which good control over composition and crystal structure was achieved. In chapter 3, the effect of epitaxial strain on one of the very simple oxide materials TiO2 was studied. It has been found that the ultra-thin TiO2 films demonstrate ferroelectric behaviour when grown on NdGaO3 substrates. TiO2 exists in various crystal phases, but none of them show ferroelectric behaviour. The epitaxial strain due to the substrate, changes the crystal structure from tetragonal to orthorhombic which in turn leads to ferroelectric behaviour. In chapter 4, a unique growth method for multiferroic BiFeO3 (BFO) thin films is shown, where a phase pure BFO thin films can be prepared even in the presence of excess bismuth precursor during the growth process. This type of growth is usually called adsorption controlled growth and can be used for growing various bismuth containing compounds, where the volatility of bismuth can create various types of defects. Chapter 5 describes the growth of Bi4Ti3O12 thin films in a layer-by-layer growth mode. In this section, the effect of Bi and Ti precursor flows on the growth of thin films is discussed and it is shown that how change in precursor flows leads to out-ofphase boundary defects during the layer-by-layer growth mode. In chapter 6, the growth of a compound Bi5Ti3FeO15, which is a 1:1 mixture of BiFeO3 and Bi4Ti3O12, is presented. The growth mechanism of Bi5Ti3FeO15 thin films is presented, where the Fe precursor flow was controlled from zero to the insertion of one full BiFeO3 perovskite unit cell into the Bi4Ti3O12 structure in addition, the effect of iron precursor flow on crystalline properties is demonstrated. The methods presented in this thesis can be adopted to grow ferroelectric and multiferroic films for industrial applications.