6 resultados para CEO2

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we use density functional theory corrected for on-site Coulomb interactions (DFT + U) and hybrid DFT (HSE06 functional) to study the defects formed when the ceria (110) surface is doped with a series of trivalent dopants, namely, Al3+, Sc3+, Y3+, and In 3+. Using the hybrid DFT HSE06 exchange-correlation functional as a benchmark, we show that doping the (110) surface with a single trivalent ion leads to formation of a localized MCe / + O O • (M = the 3+ dopant), O- hole state, confirming the description found with DFT + U. We use DFT + U to investigate the energetics of dopant compensation through formation of the 2MCe ′ +VO ̈ defect, that is, compensation of two dopants with an oxygen vacancy. In conjunction with earlier work on La-doped CeO2, we find that the stability of the compensating anion vacancy depends on the dopant ionic radius. For Al3+, which has the smallest ionic radius, and Sc3+ and In3+, with intermediate ionic radii, formation of a compensating oxygen vacancy is stable. On the other hand, the Y3+ dopant, with an ionic radius close to that of Ce4+, shows a positive anion vacancy formation energy, as does La3+, which is larger than Ce4+ (J. Phys.: Condens. Matter 2010, 20, 135004). When considering the resulting electronic structure, in Al3+ doping, oxygen hole compensation is found. However, Sc 3+, In3+, and Y3+ show the formation of a reduced Ce3+ cation and an uncompensated oxygen hole, similar to La3+. These results suggest that the ionic radius of trivalent dopants strongly influences the final defect formed when doping ceria with 3+ cations. In light of these findings, experimental investigations of these systems will be welcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of economical heterogeneous catalysts for the activation of methane is a major challenge for the chemical industry. Screening potential candidates becomes more feasible using rational catalyst design to understand the activity of potential catalysts for CH4 activation. The focus of the present paper is the use of density functional theory to examine and elucidate the properties of doped CeO2. We dope with Cu and Zn transition metals having variable oxidation state (Cu), and a single oxidation state (Zn), and study the activation of methane. Zn is a divalent dopant and Cu can have a +1 or +2 oxidation state. Both Cu and Zn dopants have an oxidation state of +2 after incorporation into the CeO2 (111) surface; however a Hubbard +U correction (+U = 7) on the Cu 3d states is required to maintain this oxidation state when the surface interacts with adsorbed species. Dissociation of methane is found to occur locally at the dopant cations, and is thermodynamically and kinetically more favorable on Zn-doped CeO2 than Cu-doped CeO2. The origins of this lie with the Zn(II) dopant moving towards a square pyramidal geometry in the sub surface layer which facilitates the formation of two-coordinated surface oxygen atoms, that are more beneficial for methane activation on a reducible oxide surface. These findings can aid in rational experimental catalyst design for further exploration in methane activation processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerium dioxide (ceria) nanoparticles have been the subject of intense academic and industrial interest. Ceria has a host of applications but academic interest largely stems from their use in the modern automotive catalyst but it is also of interest because of many other application areas notably as the abrasive in chemical-mechanical planarisation of silicon substrates. Recently, ceria has been the focus of research investigating health effects of nanoparticles. Importantly, the role of non-stoichiometry in ceria nanoparticles is implicated in their biochemistry. Ceria has well understood non-stoichiometry based around the ease of formation of anion vacancies and these can form ordered superstructures based around the fluorite lattice structure exhibited by ceria. The anion vacancies are associated with localised or small polaron states formed by the electrons that remain after oxygen desorption. In simple terms these electrons combine with Ce4+ states to form Ce3+ states whose larger ionic radii is associated with a lattice expansion compared to stoichiometric CeO2. This is a very simplistic explanation and greater defect chemistry complexity is suggested by more recent work. Various authors have shown that vacancies are mobile and may result in vacancy clustering. Ceria nanoparticles are of particular interest because of the high activity and surface area of small particulates. The sensitivity of the cerium electronic band structure to environment would suggest that changes in the properties of ceria particles at nanoscale dimensions might be expected. Notably many authors report a lattice expansion with reducing particle size (largely confined to sub-10 nm particles). Most authors assign increased lattice dimensions to the presence of a surface stable Ce2O3 type layer at low nanoparticle dimensions. However, our understanding of oxide nanoparticles is limited and their full and quantitative characterisation offers serious challenges. In a series of chemical preparations by ourselves we see little evidence of a consistent model emerging to explain lattice parameter changes with nanoparticle size. Based on these results and a review of the literature it is worthwhile asking if a model of surface enhanced defect concentration is consistent with known cerium/cerium oxide chemistries, whether this is applicable to a range of different synthesis methods and if a more consistent description is possible. In Chapter one the science of cerium oxide is outlined including the crystal structure, defect chemistry and different oxidation states available. The uses and applications of cerium oxide are also discussed as well as modelling of the lattice parameter and the doping of the ceria lattice. Chapter two describes both the synthesis techniques and the analytical methods employed to execute this research. Chapter three focuses on high surface area ceria nano-particles and how these have been prepared using a citrate sol-gel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures. X-ray diffraction methods were used to determine their lattice parameters. The particles sizes were also assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET, and, the lattice parameter was found to decrease with decreasing particle size. The results are discussed in light of the role played by surface tension effects. Chapter four describes the morphological and structural characterization of crystalline CeO2 nanoparticles prepared by forward and reverse precipitation techniques and compares these by powder x-ray diffraction (PXRD), nitrogen adsorption (BET) and high resolution transmission electron microscopy (HRTEM) analysis. The two routes give quite different materials although in both cases the products are essentially highly crystalline, dense particulates. It was found that the reverse precipitation technique gave the smallest crystallites with the narrowest size dispersion. This route also gave as-synthesised materials with higher surface areas. HRTEM confirmed the observations made from PXRD data and showed that the two methods resulted in quite different morphologies and surface chemistries. The forward route gives products with significantly greater densities of Ce3+ species compared to the reverse route. Data are explained using known precipitation chemistry and kinetic effects. Chapter five centres on the addition of terbia to ceria and has been investigated using XRD, XRF, XPS and TEM. Good solid solutions were formed across the entire composition range and there was no evidence for the formation of mixed phases or surface segregation over either the composition or temperature range investigated. Both Tb3+ and Tb4+ ions exist within the solution and the ratios of these cations are consistent with the addition of Tb8O15 to the fluorite ceria structure across a wide range of compositions. Local regions of anion vacancy ordering may be visible for small crystallites. There is no evidence of significant Ce3+ ion concentrations formed at the surface or in the bulk by the addition of terbia. The lattice parameter of these materials was seen to decrease with decreasing crystallite size. This is consistent with increased surface tension effects at small dimension. Chapter six reviews size related lattice parameter changes and surface defects in ceria nanocrystals. Ceria (CeO2) has many important applications, notably in catalysis. Many of its uses rely on generating nanodimensioned particles. Ceria has important redox chemistry where Ce4+ cations can be reversibly reduced to Ce3+ cations and associated anion vacancies. The significantly larger size of Ce3+ (compared with Ce4+) has been shown to result in lattice expansion. Many authors have observed lattice expansion in nanodimensioned crystals (nanocrystals), and these have been attributed to the presence of stabilized Ce3+ -anion vacancy combinations in these systems. Experimental results presented here show (i) that significant, but complex changes in the lattice parameter with size can occur in 2-500 nm crystallites, (ii) that there is a definitive relationship between defect chemistry and the lattice parameter in ceria nanocrystals, and (iii) that the stabilizing mechanism for the Ce3+ -anion vacancy defects at the surface of ceria nanocrystals is determined by the size, the surface status, and the analysis conditions. In this work, both lattice expansion and a more unusual lattice contraction in ultrafine nanocrystals are observed. The lattice deformations seen can be defined as a function of both the anion vacancy (hydroxyl) concentration in the nanocrystal and the intensity of the additional pressure imposed by the surface tension on the crystal. The expansion of lattice parameters in ceria nanocrystals is attributed to a number of factors, most notably, the presence of any hydroxyl moieties in the materials. Thus, a very careful understanding of the synthesis combined with characterization is required to understand the surface chemistry of ceria nanocrystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured materials are central to the evolution of future electronics and biomedical applications amongst other applications. This thesis is focused on developing novel methods to prepare a number of nanostructured metal oxide particles and films by a number of different routes. Part of the aim was to see how techniques used in nanoparticle science could be applied to thin film methods to develop functional surfaces. Wet-chemical methods were employed to synthesize and modify the metal oxide nanostructures (CeO2 and SiO2) and their structural properties were characterized through advanced X-ray diffraction, electron microscopy, photoelectron spectroscopy and other techniques. Whilst particulates have uses in many applications, their attachment to surfaces is of importance and this is frequently challenging. We examined the use of block copolymer methods to form very well defined metal oxide particulate-like structures on the surface of a number of substrates. Chapter 2 describes a robust method to synthesize various sized silica nanoparticles. As-synthesized silica nanoparticles were further functionalized with IR-820 and FITC dyes. The ability to create size controlled nanoparticles with associated (optical) functionality may have significant importance in bio-medical imaging. Thesis further describes how non-organic modified fluorescent particles might be prepared using inorganic oxides. A study of the concentrations and distributions of europium dopants within the CeO2 nanoparticles was undertaken and investigated by different microscopic and spectroscopic techniques. The luminescent properties were enhanced by doping and detailed explanations are reported. Additionally, the morphological and structural evolution and optical properties were correlated as a function of concentrations of europium doping as well as with further annealing. Further work using positron annihilation spectroscopy allowed the study of vacancy type defects formed due to europium doping in CeO2 crystallites and this was supported by complimentary UV-Vis spectra and XRD work. During the last few years the interest in mesoporous silica materials has increased due to their typical characteristics such as potential ultra-low dielectric constant materials, large surface area and pore volume, well-ordered and uniform pores with adjustable pores between 2 and 50 nm. A simple, generic and cost-effective route was used to demonstrate the synthesis of 2D mesoporous silica thin films over wafer scale dimensions in chapter 5. Lithographic resist and in situ hard mask block copolymer followed by ICP dry etching were used to fabricate mesoporous silica nanostructures. The width of mesoporous silica channels can be varied by using a variety of commercially available lithographic resists whereas depth of the mesoporous silica channels can be varied by altering the etch time. The crystal structure, morphology, pore arrangement, pore diameters, thickness of films and channels were determined by XRD, SEM, ellipsometry and the results reported. This project also extended work towards the study of the antimicrobial study of nanopatterned silver nanodot arrays formed using the block copolymer approach defined above. Silver nanodot arrays were successfully tested for antimicrobial activity over S. aureus and P. aeruginosa biofilms and results shows silver nanodots has good antimicrobial activity for both S. aureus and P. aeruginosa biofilms. Thus, these silver nanodot arrays shows a potential to be used as a substitute for the resolution of infection complications in many areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The different oxidation states of chromium allow its bulk oxide form to be reducible, facilitating the oxygen vacancy formation process, which is a key property in applications such as catalysis. Similar to other useful oxides such as TiO2, and CeO2, the effect of substitutional metal dopants in bulk Cr2O3 and its effect on the electronic structure and oxygen vacancy formation are of interest, particularly in enhancing the latter. In this paper, density functional theory (DFT) calculations with a Hubbard + U correction (DFT+U) applied to the Cr 3d and O 2p states, are carried out on pure and metal-doped bulk Cr2O3 to examine the effect of doping on the electronic and geometric structure. The role of dopants in enhancing the reducibility of Cr2O3 is examined to promote oxygen vacancy formation. The dopants are Mg, Cu, Ni, and Zn, which have a formal +2 oxidation state in their bulk oxides. Given this difference in host and, dopant oxidation states, we show that to predict the correct ground state two metal dopants charge compensated with an oxygen vacancy are required. The second oxygen atom removed is termed "the active" oxygen vacancy and it is the energy required to remove this atom that is related to the reduction process. In all cases, we find that substitutional doping improves the oxygen vacancy formation of bulk Cr2O3 by lowering the energy cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceria is an important component of catalysts for oxidation reactions that proceed through the Mars-van Krevelen mechanism, promoting activity. A paradigm example of this is the VOx–CeO2 system for oxidative dehydrogenation reactions, where vanadium oxide species are supported on ceria and a special synergy between them is behind the enhanced activity: reduction of the catalyst is promoted by ceria undergoing reduction. This leads to favourable oxygen vacancy formation and hydrogen adsorption energies—useful descriptors for the oxidation activity of VOx–CeO2 catalysts. In this paper, we examine if this promoting effect on ceria-based catalysts holds for other metal oxide modifiers and we investigate MnOn– and CrOn–CeO2(111) (n = 0 − 4) as examples. We show, combining density functional theory calculations and statistical thermodynamics that similarly to the vanadia modifier, the stable species in each case is MnO2– and CrO2–CeO2. Both show favourable energetics for oxygen vacancy formation and hydrogen adsorption, indicating that VO2–CeO2 is not the only system of this type that can have an enhanced activity for oxidation reactions. However, the mechanism involved in each case is different: CrO2–CeO2 shows similar properties to VO2–CeO2 with ceria reduction upon oxygen removal stabilising the 5+ oxidation state of Cr. In contrast, with MnO2–CeO2, Mn is preferentially reduced. Finally, a model system of VO2–Mg:CeO2 is explored that shows a synergy between VO2 modification and Mg doping. These results shed light on the factors involved in active oxidation catalysts based on supported metal oxides on ceria that should be taken into consideration in a rational design of such catalysts.