3 resultados para CDKN2A Methylation
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
The physicochemical and nutritional properties of two fruit by-products were initially studied. Apple pomace (AP) contained a high level of fibre and pectin. The isolated AP pectin had a high level of methylation which developed viscous pastes. Orange pomace also had high levels of fibre and pectin, and it was an abundant source of minerals such as potassium and magnesium. Due to the fibrous properties of orange pomace flour, proofing and water addition were studied in a bread formulation. When added at levels greater than 6%, the loaf volume decreased. An optimised formulation and proofing time was derived using the optimisation tool; these consisted of 5.5% orange pomace, 94.6% water inclusion and with 49 minutes proofing. These optimised parameters doubled the total dietary fibre content of the bread compared to the original control. Pasting results showed how orange pomace inclusions reduced the final viscosity of the batter, reducing the occurrence of starch gelatinisation. Rheological properties i.e. the storage modulus (G') and complex modulus (G*) increased in the orange pomace batter compared to the control batter. This demonstrates how the orange pomace as an ingredient improved the robustness of the formulation. Sensory panellists scored the orange pomace bread comparably to the control bread. Milled apple pomace was studied as a potential novel ingredient in an extruded snack. Parameters studied included apple pomace addition, die head temperature and screw speed. As screw speed increased the favourable extrudate characteristics such as radical expansion ratio, porosity and specific volume decreased. The inclusion of apple pomace had a negative effect on extrudate characteristics at levels greater than 8% addition. Including apple pomace reduced the hardness and increased the crispiness of the snack. The optimised and validated formulation and extrusion process contained the following parameters: 7.7% apple pomace, 150°C die head temperature and a screw speed of 69 rpm.
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Resumo:
A large number of optically active drugs and natural products contain α-functionalised ketones or simple derivatives thereof. Furthermore, chiral α-alkylated ketones are useful synthons and have found widespread use in total synthesis. The asymmetric alkylation of ketones represents one of the most powerful and longstanding procedures in organic chemistry. Surprisingly, however, only one effective methodology is available, and this involves the use of chiral auxiliaries. This is discussed in Chapter 1, which also provides a background of other key topics discussed throughout the thesis. Expanding on the existing methodology of chiral auxiliaries, Chapter 2 details the synthesis of a novel chiral auxiliary containing a pyrrolidine ring and its use in the asymmetric preparation of α-alkylated ketones with good enantioselectivity. The synthesis of racemic α-alkylated ketones as reference standards for GC chromatography is also reported in this chapter. Chapter 3 details a new approach to chiral α-alkylated ketones using an intermolecular chirality transfer methodology. This approach employs the use of simple non-chiral dimethylhydrazones and their asymmetric alkylation using the chiral diamine ligands, (+)- and (-)-sparteine. The methodology described represents the first example of an asymmetric alkylation of non-chiral azaenolates. Enantiomeric ratios up to 83 : 17 are observed. Chapter 4 introduces the first aldol-Tishchenko reaction of an imine derivative for the preparation of 1,3-aminoalcohol precursors. 1,3-Aminoalcohols can be synthesised via indirect routes involving various permutations of stepwise construction with asymmetric induction. Our approach offers an alternative highly diastereomeric route to the synthesis of this important moiety utilising N-tert-butanesulfinyl imines in an aldol-Tishchenko-type reaction. Chapter 5 details the experimental procedures for all of the above work. Chapter 6 discusses the results of a separate research project undertaken during this PhD. 2-alkyl-quinolin-4-ones and their N-substituted derivatives have several important biological functions such as the role of Pseudomonas quinolone signal (PQS) in quorum sensing. Herein, we report the synthesis of its biological precursor, 2-heptyl-4-hydroxy-quinoline (HHQ) and possible isosteres of PQS; the C-3 Cl, Br and I analogues. N-Methylation of the iodide was also feasible and the usefulness of this compound showcased in Pd-catalysed cross-coupling reactions, thus allowing access to a diverse set of biologically important molecules.