6 resultados para CCL1 chemokine

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteoporosis is a complex skeletal disorder characterized by compromised bone strength. Variation in bone mineral density (BMD) is a contributing factor. The aim of this research as to select informative single nucleotide polymorphisms (SNPs) in potential candidate genes from loci suggestively linked to BMD variation for fine mapping. The gene regulated by oestrogen in breast cancer 1 (GREB1), located at 2p25.1, was selected. GREB1 transcription is initiated early in the oestrogen receptor alpha regulated pathway. There was significant association between GREB1_03 and BMD variation at the lumbar spine and femoral neck (FN) in the discovery cohort. Significant association was observed between GREB1_04 and FN BMD in the replication cohort. The development and differentiation enhancing factor 2, the integrin cytoplasmic domain associated protein 1 and A-disintegrin and metalloprotease 17 were selected due to their respective roles in cell mobility and adhesion. There was no linkage or association observed between the Chr2 cluster SNPs and BMD. Two factors in bone remodelling are the attraction of bone cell precursors and endocrine regulation of the process, primarily through the action of parathyroid hormone (PTH). The C-C chemokine receptor type 3 (CCR3) encodes a CC chemokine receptor expressed in osteoclast precursors. The PTH receptor type 1 (PTHR1) encodes a G-protein coupled receptor for PTH. Association was observed between CCR3 haplotypes and BMD variation at the FN. There was no linkage or association observed between PTHR1 SNPs and BMD variation. Population genetic studies with complex phenotypes endeavour to elucidate the traits genetic architecture. This study presents evidence of association between GREB1 and BMD variation and as such, introduces GREB1 as a novel gene target for osteoporosis genetics studies. It affirms that common genomic variants in PTHR1 are not associated with BMD variation in Caucasians and supports the evidence that CCR3 may be contributing to BMD variation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of γ-secretase protease activities in development, neurogenesis and the immune system are highlighted by the diversity of its substrates and phenotypic characterization of Presenilin (PS)-deficient transgenic animals. Since the discovery of Amyloid precursor protein (APP) and it’s cleavage by γ-secretase complexes, over 90 other type I membrane proteins have been identified as γ-secretase substrates. We have identified interleukin-1 (IL-1) receptor type I (IL-1R1), toll-like receptor 4 (TLR4) and tumour necrosis factor-α (TNFα) receptor-1 (TNFR1) as novel substrates for - secretase cleavage, which play an important role in innate immunity. In this study, using PS-deficient cells and PS-knockout animal models we examined the role of PS proteins, PS1 and PS2, in IL-1R1-, TLR4- and TNFR1- mediated inflammatory responses. Data presented show that in response to IL- 1β, lipopolysaccharide (LPS) or TNFα, immortalised fibroblasts from PS2- deficient animals have diminished production of specific cytokines and chemokine, with differential reduction in nuclear factor-κB (NF-κB) and (mitogen activated protein kinase) MAPK activities. In contrast, no defect in the response to IL-1β, LPS or TNFα was observed in PS1-deficient immortalised fibroblasts. These observations were confirmed using bone marrow-derived macrophages from PS2-null mice, which also display impaired responsiveness to IL-1β- and LPS, with decreased production of inflammatory cytokines. Furthermore, in whole animal in vivo responses, we show that PS2-deficient animals display ligand (IL-1β, LPS and TNFα)-dependent alterations in the production of specific pro-inflammatory cytokines or chemokines. Importantly, this reduced responsiveness to IL-1β, LPS or TNFα is independent of γ- secretase protease activity and γ-secretase cleavage of TNFR1, IL-1R1 or TLR4. These observations suggest a novel γ-secretase-independent role of PS2 in the regulation of innate immune responsiveness and challenge current concepts regarding the regulation of IL-1β-, LPS- and TNFα-mediated immune signalling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytokine-driven signalling shapes immune homeostasis and guides inflammatory responses mainly through induction of specific gene expression programmes both within and outside the immune cell compartment. These transcriptional outputs are often amplified via cytokine synergy, which sets a stimulatory threshold that safeguards from exacerbated inflammation and immunopathology. In this study, we investigated the molecular mechanisms underpinning synergy between two pivotal Th1 cytokines, IFN-γ and TNF-α, in human intestinal epithelial cells. These two proinflammatory mediators induce a unique state of signalling and transcriptional synergy implicated in processes such as antiviral and antitumour immunity, intestinal barrier and pancreatic β-cell dysfunction. Since its discovery more than 30 years ago, this biological phenomenon remains, however, only partially defined. Here, using a functional genomics approach including RNAi perturbation screens and small-molecule inhibitors, we identified two new regulators of IFN-γ/TNF-α-induced chemokine and antiviral gene and protein expression, a Bcl-2 protein BCL-G and a histone demethylase UTX. We also discovered that IFN-γ/TNF-α synergise to trigger a coordinated shutdown of major receptor tyrosine kinases expression in colon cancer cells. Together, these findings extend our current understanding of how IFN-γ/TNF-α synergy elicits qualitatively and quantitatively distinct outputs in the intestinal epithelium. Given the well-documented role of this synergistic state in immunopathology of various disorders, our results may help to inform the identification of high quality and biologically relevant druggable targets for diseases characterised by an IFN-γ/TNF-α high immune signature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amygdala is a limbic structure that is involved in many of our emotions and processing of these emotions such as fear, anger and pleasure. Conditions such as anxiety, autism, and also epilepsy, have been linked to abnormal functioning of the amygdala, owing to improper neurodevelopment or damage. This thesis investigated the cellular and molecular changes in the amygdala in models of temporal lobe epilepsy (TLE) and maternal immune activation (MIA). The kainic acid (KA) model of temporal lobe epilepsy (TLE) was used to induce Ammon’s-horn sclerosis (AHS) and to investigate behavioural and cytoarchitectural changes that occur in the amygdala related to Neuropeptide Y1 receptor expression. Results showed that KA-injected animals showed increased anxiety-like behaviours and displayed histopathological hallmarks of AHS including CA1 ablation, granule cell dispersion, volume reduction and astrogliosis. Amygdalar volume and neuronal loss was observed in the ipsilateral nuclei which was accompanied by astrogliosis. In addition, a decrease in Y1 receptor expressing cells in the ipsilateral CA1 and CA3 sectors of the hippocampus, ipsi- and contralateral granule cell layer of the dentate gyrus and ipsilateral central nucleus of the amygdala was found, consistent with a reduction in Y1 receptor protein levels. The results suggest that plastic changes in hippocampal and/or amygdalar Y1 receptor expression may negatively impact anxiety levels. Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and tight regulation and appropriate control of GABA is vital for neurochemical homeostasis. GABA transporter-1 (GAT-1) is abundantly expressed by neurones and astrocytes and plays a key role in GABA reuptake and regulation. Imbalance in GABA homeostasis has been implicated in epilepsy with GAT-1 being an attractive pharmacological target. Electron microscopy was used to examine the distribution, expression and morphology of GAT-1 expressing structures in the amygdala of the TLE model. Results suggest that GAT-1 was preferentially expressed on putative axon terminals over astrocytic processes in this TLE model. Myelin integrity was examined and results suggested that in the TLE model myelinated fibres were damaged in comparison to controls. Synaptic morphology was studied and results suggested that asymmetric (excitatory) synapses occurred more frequently than symmetric (inhibitory) synapses in the TLE model in comparison to controls. This study illustrated that the amygdala undergoes ultrastructural alterations in this TLE model. Maternal immune activation (MIA) is a risk factor for neurodevelopmental disorders such as autism, schizophrenia and also epilepsy. MIA was induced at a critical window of amygdalar development at E12 using bacterial mimetic lipopolysaccharide (LPS). Results showed that MIA activates cytokine, toll-like receptor and chemokine expression in the fetal brain that is prolonged in the postnatal amygdala. Inflammation elicited by MIA may prime the fetal brain for alterations seen in the glial environment and this in turn have deleterious effects on neuronal populations as seen in the amygdala at P14. These findings may suggest that MIA induced during amygdalar development may predispose offspring to amygdalar related disorders such as heightened anxiety, fear impairment and also neurodevelopmental disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinitis Pigmentosa (RP) is the name given to a group of hereditary diseases causing progressive and degenerative blindness. RP affects over 1 in 4000 individuals, making it the most prevalent inherited retinal disease worldwide, yet currently there is no cure. In 2011, our group released a paper detailing the protective effects of the synthetic progestin ‘Norgestrel’. A common component of the female oral contraceptive pill, Norgestrel was shown to protect against retinal cell death in two distinct mouse models of retinal degeneration: in the Balb/c light damage model and the Pde6brd10 (rd10) model. Little was known of the molecular workings of this compound however and thus this study aimed to elucidate the protective manner in which Norgestrel worked. To this aim, the 661W cone photoreceptor-like cell line and ex vivo retinal explanting was utilised. We found that Norgestrel induces a increase in neuroprotective basic fibroblast growth factor (bFGF) with subsequent downstream actions on the inhibition of glycogen synthase kinase 3β. Progesterone receptor expression was subsequently characterised in the C57 and rd10 retinas and in the 661W cell line. Norgestrel caused nuclear trafficking of progesterone receptor membrane complex one (PGRMC1) in 661W cells and thus Norgestrel was hypothesised to work primarily through the actions of PGRMC1. This trafficking was shown to be responsible for the critical upregulation of bFGF and PGRMC1- Norgestrel binding was proven to cause a neuroprotective bFGF-mediated increase in intracellular calcium. The protective properties of Norgestrel were further studied in the rd10 mouse model of retinitis pigmentosa. Using non-invasive diet supplementation (80mg/kg), we showed that Norgestrel gave significant retinal protection out to postnatal day 40 (P40). Overactive microglia have previously been shown to potentiate photoreceptor cell loss in the degenerating rd10 retina and thus we focussed on Norgestrel-mediated changes in photoreceptor-microglial crosstalk. Norgestrel acted to dampen pro-inflammatory microglial cell reactivity, decreasing chemokine (MCP1, MCP3, MIP-1α, MIP-1β) and subsequent damaging cytokine (TNFα, Il-1β) production. Critically, Norgestrel up-regulated photoreceptor-microglial, fractalkine-CX3CR1 signalling 1000-fold in the P20 rd10 mouse. Known to prevent microglial activation, we hypothesise that Norgestrel acts as a vital anti-inflammatory in the diseased retina, driving fractalkine-CX3CR1 signalling to delay retinal degeneration. This study stands to highlight some of the neuroprotective mechanisms utilised by Norgestrel in the prevention of photoreceptor cell death. We identify for the first time, not only a pro-survival pathway activated directly in photoreceptor cells, but also a Norgestreldriven mediation of an otherwise damaging microglial cell response. All taken, these results form the beginning of a case to bring Norgestrel to clinical trials, as a potential therapeutic for the treatment of RP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a degenerative disease leading to photoreceptor cell loss. Mouse models of RP, such as the rd10 mouse (B6.CXBl-Pde6brd10/J), have enhanced our understanding of the disease, allowing for development of potential therapeutics. In 2011, our group first demonstrated that the synthetic progesterone analogue ‘Norgestrel’ is neuroprotective in two mouse models of retinal degeneration, including the rd10 mouse. We have since elucidated several mechanisms by which Norgestrel protects stressed photoreceptors, such as upregulating growth factors. This study consequently aimed to further characterize Norgestrel’s neuroprotective effects. Specifically, we sought to investigate the role that microglia might play; for microglial-derived inflammation has been shown to potentiate neurodegeneration. Dams of post-natal day (P) 10 rd10 pups were given a Norgestrel-supplemented diet (80mg/kg). Upon weaning, pups remained on Norgestrel. Tissue was harvested from P15-P50 rd10 mice on control or Norgestrel-supplemented diet. Norgestrel-diet administration provided significant retinal protection out to P40 in rd10 mice. Alterations in microglial activity coincided with significant protection, implicating microglial changes in Norgestrel-induced neuroprotection. Utilizing primary cultures of retinal microglia and 661W photoreceptor-like cells, we show that rd10 microglia drive neuronal cell death. We reveal a novel role of Norgestrel, acting directly on microglia to reduce pro-inflammatory activation and prevent neuronal cell death. Norgestrel effectively suppresses cytokine, chemokine and danger-associated molecular pattern molecule (DAMP) expression in the rd10 retina. Remarkably, Norgestrel upregulates fractalkine-CX3CR1 signaling 1 000-fold at the RNA level, in the rd10 mouse. Fractalkine-CX3CR1 signaling has been shown to protect neurons by regulating retinal microglial activation and migration. Ultimately, these results present Norgestrel as a promising treatment for RP, with dual actions as a neuroprotective and anti-inflammatory agent in the retina.