13 resultados para CASEIN PEPTIZATION

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physicochemical properties of cheese and milk gels are greatly influenced by molecular interactions between the casein proteins involving calcium. Novel experiments were designed to investigate the relationship between insoluble caseinbound cations and rheological properties of Cheddar cheese and rennet-induced milk gels. Cheddar cheese and rennet-induced milk gels were supplemented with Mg2+ or Sr2+ to compare their effects on their rheological properties to those previously reported in literature for Ca2+ supplementation. Sr2+ displayed behaviour similar to Ca2+ as observed by its ability to increase the rigidity of cheese and rennet milk gels and also decrease cheese meltability. Mg+2 had no influence on cheese rheological properties and was greatly inferior to Ca2+ and Sr2+ in its ability to increase rennet milk gel elasticity. Cheddar cheese was supplemented with the calcium-chelating salts trisodium citrate, disodium hydrogen phosphate or disodium EDTA, in an attempt to reduce the CCP content of cheese and thereby modify its rheological and functional properties. TSC and EDTA were successful in decreasing cheese CCP, whereas DSP caused an initial increase in CCP content. Cheddar cheese was supplemented with chlorides of iron, copper and zinc at salting to investigate the effects of concentrations of these elements in excess of those found innately or commonly in fortification studies, with emphasis on mineral equilibria changes and resultant alteration of rheological properties. Zinc addition was the only added metal that significantly influenced cheese rheological properties, leading to an increase in cheese rigidity and decreased cheese melt at elevated temperatures. Gum tragacanth was used as a fat-replacer in the manufacture of reduced-fat Cheddar cheese, in an attempt to improve the rheological, functional and sensory properties of reduced-fat Cheddar. Overall, the experimental work reported in this thesis generated new knowledge and theories about how casein-mineral interactions influence rheological properties of casein systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of equine milk differs considerably from that of the milk of the principal dairying species, i.e., the cow, buffalo, goat and sheep. Because equine milk resembles human milk in many respects and is claimed to have special therapeutic properties, it is becoming increasingly popular in Western Europe, where it is produced on large farms in several countries. Equine milk is considered to be highly digestible, rich in essential nutrients and to possess an optimum whey protein:casein ratio, making it very suitable as a substitute for bovine milk in paediatric dietetics. There is some scientific basis for the special nutritional and health-giving properties of equine milk but this study provides a comprehensive analysis of the composition and physico-chemical properties of equine milk which is required to fully exploit its potential in human nutrition. Quantification and distribution of the nitrogenous components and principal salts of equine milk are reported. The effects of the high concentration of ionic calcium, large casein micelles (~ 260 nm), low protein, lack of a sulphydryl group in equine β-lactoglobulin and a very low level of κ-casein on the physico-chemical properties of equine milk are reported. This thesis provides an insight into the stability of equine casein micelles to heat, ethanol, high pressure, rennet or acid. Differences in rennet- and acid-induced coagulation between equine and bovine milk are attributed not only to the low casein content of equine milk but also to differences in the mechanism by which the respective micelles are stabilized. It has been reported that β-casein plays a role in the stabilization of equine casein micelles and proteomic techniques support this view. In this study, equine κ-casein appeared to be resistant to hydrolysis by calf chymosin but equine β-casein was readily hydrolysed. Resolution of equine milk proteins by urea-PAGE showed the multi-phosphorylated isoforms of equine αs- and β-caseins and capillary zone electrophoresis showed 3 to 7 phosphorylated residues in equine β-casein. In vitro digestion of equine β-casein by pepsin and Corolase PP™ did not produce casomorphins BCM-5 or BCM-7, believed to be harmful to human health. Electron microscopy provided very clear, detailed images of equine casein micelles in their native state and when renneted or acidified. Equine milk formed flocs rather then a gel when renneted or acidified which is supported by dynamic oscillatory analysis. The results presented in this thesis will assist in the development of new products from equine milk for human consumption which will retain some of its unique compositional and health-giving properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cream liqueurs manufactured by a one-step process, where alcohol was added before homogenisation, were more stable than those processed by a two -step process which involved addition of alcohol after homogenisation. Using the one-step process, it was possible to produce creaming-stable liqueurs by using one pass through a homogeniser (27.6 MPa) equipped with "liquid whirl" valves. Test procedures to characterise cream liqueurs and to predict shelf life were studied in detail. A turbidity test proved simple, rapid and sensitive for characterising particle size and homogenisation efficiency. Prediction of age thickening/gelation in cream liqueurs during incubation at 45 °C depended on the age of the sample when incubated. Samples that gelled at 45 °C may not do so at ambient temperature. Commercial cream liqueurs were similar in gross chemical composition, and unlike experimentally produced liqueurs, these did not exhibit either age-gelation at ambient or elevated temperatures. Solutions of commercial sodium caseinates from different sources varied in their calcium sensitivity. When incorporated into cream liqueurs, caseinates influenced the rate of viscosity increase, coalescence and, possibly, gelation during incubated storage. Mild heat and alcohol treatment modified the properties of caseinate used to stabilise non-alcoholic emulsions, while the presence of alcohol in emulsions was important in preventing clustering of globules. The response to added trisodium citrate varied. In many cases, addition of the recommended level (0.18%) did not prevent gelation. Addition of small amounts of NaOH with 0.18 % trisodium citrate before homogenisation was beneficial. The stage at which citrate was added during processing was critical to the degree of viscosity increase (as opposed to gelation) in the product during 45 °C incubation. The component responsible for age-gelation was present in the milk-solids non fat portion of the cream and variations in the creams used were important in the age-gelation phenomenon Results indicated that, in addition to possibly Ca++, the micellar casein portion of serum may play a role in gelation. The role of the low molecular weight surfactants, sodium stearoyl lactylate and monodiglycerides in preventing gelation, was influenced by the presence of trisodium citrate. Clustering of fat globules and age-gelation were inhibited when 0.18 % citrate was included. Inclusion of sodium stearoyl lactylate, but not monodiglycerides, reduced the extent of viscosity increase at 45 °C in citrate containing liqueurs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies were undertaken to investigate proteolysis of the caseins during the initial stages of maturation of Cheddar cheese. Isolated caseins were hydrolyzed by enzymes thought to be of importance during cheese ripening and the resulting peptides isolated and identified. Large peptides were also isolated from Cheddar cheese and identified, thus enabling the extent to which casein degradation studies could be extrapolated to cheese to be established. The proteolytic specificity of chymosin on bovine αs1- and αs2-caseins and of plasmin on bovine αs1-casein were determined. The action of cathepsin D, the principal indigenous acid milk proteinase, on caseins was studied and its pH optimum and sensitivity to NaCI determined. The action of cathepsin D on αs1-, αs2-, β- and κ-caseins was compared with that of chymosin and was found to be generally similar for the hydrolysis of αs1- and κ-caseins but to differ for αs2-and β- caseins. β-Casein in solution was hydrolyzed by cell wall-associated proteinases from three strains of Lactococcus lactis; comparison of electrophoretograms of the hydrolyzates with those of Cheddar cheese indicated that no peptides produced by cell wall-associated proteinases were detectable in the cheeses. All the major peptides in the water-insoluble fraction of Cheddar cheese were isolated and identified. It was found that β-casein was degraded primarily by plasmin and αs1 -casein by chymosin. Initial chymosin and plasmin cleavage sites in αs1-, and β-casein, respectively, identified in these and other studies corresponded to the peptides isolated from cheese. The importance of non-starter lactic acid bacteria (NSLAB) to the maturation of Cheddar was studied in cheeses manufactured from raw, pasteurized or microfiltered milks. NSLAB were found to strongly influence the quality and patterns of proteolysis. Results presented in this thesis are consistent with the hypothesis that primary proteolysis in Cheddar is catalysed primarily by the action of chymosin and plasmin on intact αs1- and β-caseins, respectively. The resulting large peptides so produced are subsequently degraded by these enzymes and by proteinases and peptidases from the starter and NSLAB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of procedures and media for the micropropagation of B. rex are described. Media for the production of plantlets from a number of other Begonia hybrids are also provided. Growth analysis data is given for plants produced in vivo from leaf cuttings and in vitro from mature leaf petioles and immature leaves derived from singly and multiply recycled axenic plantlets. No significant difference was found in phenotype or quantitative vegetative characters for any of the populations assessed. The results presented from studies on the development of broad spectrum media for the propagation of a number of B. rex cultivars using axenic leaf explants on factorial combinations of hormones illustrate the major influence played by the genotype on explant response in vitro and suggest media on which a range of B. rex cultivars may be propagated. Procedures for in vitro irradiation and colchicine treatments to destabilize the B. rex genome have also been described. Variants produced from these treatments indicate the utility of in vitro procedures for the expression of induced somatic variation. Colour variants produced from irradiation treatment have been cultured and prove stable. Polyploids produced as variants from irradiation treatment have been subcultured but prove unstable. Media for the induction and proliferation of callus are outlined. The influence of callus subculture and aging on the stability of the B. rex genome is assessed by chromosomal analysis of cells, in vitro and in regenerants. The B. rex genome is destabilized in callus culture but attenuation of variation occurs on regeneration. Diploid cell lines are maintained in callus subcultures and supplementation of regenerative media with high cytokinin concentrations, casein hydrolysate or adenine failed to produce variants. Callus aging however resulted in the production of polyploids. The presence and expression of pre-existing somatic variation in B. rex pith and root tissue is assessed and polyploids have been produced from pith tissues cultured in vitro. The stability of the B. rex genome and the application of tissue culture to micropropagation and breeding of B. rex are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increased plasmin and plasminogen levels and elevated somatic cell counts (SCC) and polymorphonuclear leucocyte levels (PMN) were evident in late lactation milk. Compositional changes in these milks were associated with increased SCC. The quality of late lactation milks was related to nutritional status of herds, with milks from herds on a high plane of nutrition having composition and clotting properties similar to, or superior to, early-mid lactation milks. Nutritionally-deficient cows had elevated numbers of polymorphonuclear leucocytes (PMNs) in their milk, elevated plasmin levels and increased overall proteolytic activity. The dominant effect of plasmin on proteolysis in milks of low SCC was established. When present in elevated numbers, somatic cells and PMNs in particular had a more significant influence on the proteolysis of both raw and pasteurised milks than plasmin. PMN protease action on the caseins showed proteolysis products of two specific enzymes, cathepsin B and elastase, which were also shown in high SCC milk. Crude extracts of somatic cells had a high specificity on αs1-casein. Cheeses made from late lactation milks had increased breakdown of αs1-casein, suggestive of the action of somatic cell proteinases, which may be linked to textural defects in cheese. Late lactation cheeses also showed decreased production of small peptides and amino acids, the reason for which is unknown. Plasmin, which is elevated in activity in late lactation milk, accelerated the ripening of Gouda-type cheese, but was not associated with defects of texture or flavour. The retention of somatic cell enzymes in cheese curd was confirmed, and a potential role in production of bitter peptides identified. Cheeses made from milks containing high levels of PMNs had accelerated αs1-casein breakdown relative to cheeses made from low PMN milk of the same total SCC, consistent with the demonstrated action of PMN proteinases. The two types of cheese were determined significantly different by blind triangle testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lactococcus lactis is used extensively world-wide for the production of fermented dairy products. Bacteriophages (phages) infecting L. lactis can result in slow or incomplete fermentations, or may even cause total fermentation failure. Therefore, bacteriophages disrupting L. lactis fermentation are of economic concern. This thesis employed a multifaceted approach to investigate various molecular aspects of phage-host interaction in L. lactis. The genome sequence of an Irish dairy starter strain, the prophage-cured L. lactis subsp. cremoris UC509.9, was studied. The 2,250,427 bp circular chromosome represents the smallest among its sequenced lactococcal equivalents. The genome displays clear genetic adaptation to the dairy niche in the form of extensive reductive evolution. Gene prediction identified 2066 protein-encoding genes, including 104 which showed significant homology to transposase-specifying genes. Over 9 % of the identified genes appear to be inactivated through stop codons or frame shift mutations. Many pseudogenes were found in genes that are assigned to carbohydrate and amino acid transport and metabolism orthologous groups, reflecting L. lactis UC509.9’s adaptation to the lactose and casein-rich dairy environment. Sequence analysis of the eight plasmids of L. lactis revealed extensive adaptation to the dairy environment. Key industrial phenotypes were mapped and novel lactococcal plasmid-associated genes highlighted. In addition to chromosomally-encoded bacteriophage resistance systems, six functional such systems were identified, including two abortive infection systems, AbiB and AbiD1, explaining the observed phage resistance of L. lactis UC509.9 Molecular analysis suggests that the constitutive expression of AbiB is not lethal to cells, suggesting the protein is expressed in an un/inactivated form. Analysis of 936 species phage sk1-escape mutants of AbiB revealed that all such mutants harbour mutations in orf6, which encodes the major capsid protein. Results suggest that the major capsid protein is required for activation of the AbiB system, although this requires furrther investigations. Temporal transcriptomes of L. lactis UC509.9 undergoing lytic infection with either one of two distinct bacteriophages, Tuc2009 and c2, was determined and compared to the transcriptome of uninfected UC509.9 cells. Whole genome microarrays performed at various time-points post-infection demonstrated a rather modest impact on host transcription. Alterations in the UC509.9 transcriptome during lytic infection appear phage-specific, with a relatively small number of differentially transcribed genes shared between infection with either Tuc2009 or c2. Transcriptional profiles of both bacteriophages during lytic infection was shown to generally correlate with previous studies and allowed the confirmation of previously predicted promoter sequences. Bioinformatic analysis of genomic regions encoding the presumed cell wall polysaccharide (CW PS) biosynthesis gene cluster of several strains of L. lactis was performed. Results demonstrate the presence of three dominant genetic types of this gene cluster, termed type A, B and C. These regions were used for the development of a multiplex PCR to identify CW PS genotype of various lactococcal strains. Analysis of 936 species phage receptor binding protein phylogeny (RBP) and CW PS genotype revealed an apparent correlation between RBP phylogeny and CW PS type, thereby providing a partial explanation for the observed narrow host range of 936 phages. Further analysis of the genetic locus encompassing the presumed CW PS biosynthesis operon of eight strains identified as belonging to the CW PS C (geno)type, revealed the presence of a variable region among the examined strains. The obtained comparative analysis allowed for the identification of five subgroups of the C type, named C1 to C5. We purified an acidic polysaccharide from the cell wall of L. lactis 3107 (C2 subtype) and confirmed that it is structurally different from the CW PS of the C1 subtype L. lactis MG1363. Combinations of genes from the variable region of C2 subtype were amplified from L. lactis 3107 and introduced into a mutant of the C1 subtype L. lactis NZ9000 (a direct derivative of MG1363) deficient in CW PS biosynthesis. The resulting recombinant mutant synthesized a CW PS with a composition characteristic for that of the C2 subtype L. lactis 3107 and not the wildtype C1 L. lactis NZ9000. The recombinant mutant exhibited a changed phage resistance/sensitivity profile consistent with that of L. lactis 3107, which unambiguously demonstrated that L. lactis 3107 CW PS is the host cell surface receptor of two bacteriophages belonging to the P335 species as well as phages that are member of the 936 species. The research presented in this thesis has significantly advanced our understanding of L. lactis bacteriophage-host interactions in several ways. Firstly, the examination of plasmidencoded bacteriophage resistance systems has allowed inferences to be made regarding the mode of action of AbiB, thereby providing a platform for further elucidation of the molecular trigger of this system. Secondly, the phage infection transcriptome data presented, in addition to previous work, has made L. lactis a model organism in terms of transcriptomic studies of bacteriophage-host interactions. And finally, the research described in this thesis has for the first time explicitly revealed the nature of a carbohydrate bacteriophage receptor in L. lactis, while also providing a logical explanation for the observed narrow host ranges exhibited by 936 and P335 phages. Future research in discerning the structures of other L. lactis CW PS, combined with the determination of the molecular interplay between receptor binding proteins of these phages and CW PS will allow an in depth understanding of the mechanism by which the most prevalent lactococcal phages identify and adsorb to their specific host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, extensive research has been carried out on the health benefits of milk proteins and peptides. Biologically active peptides are defined as specific protein fragments which have a positive impact on the physiological functions of the body; such peptides are produced naturally in vivo, but can also be generated by physical and/or chemical processes, enzymatic hydrolysis and/or microbial fermentation. The aims of this thesis were to investigate not only the traditional methods used for the generation of bioactive peptides, but also novel processes such as heat treatment, and the role of indigenous milk proteases, e.g., in mastitic milk, in the production of such peptides. In addition, colostrum was characterised as a source of bioactive proteins and peptides. Firstly, a comprehensive study was carried out on the composition and physical properties of colostrum throughout the early-lactation period. Marked differences in the physico-chemical properties of colostrum compared with milk were observed. Various fractions of colostrum were also tested for their effect on the secretion of pro- and anti-inflammatory cytokines from a macrophage cell line and bone marrow dendritic cells, as well as insulin secretion from a pancreatic beta cell line. A significant reduction in the secretion of the pro-inflammatory cytokines, TNF-α, IL-6, IL-1β and IL-12, a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, as well as a significant increase in insulin secretion were observed for various colostrum fractions. Another study examined the early proteomic changes in the milk of 8 cows in response to infusion with the endotoxin lipopolysaccharide (LPS) at quarter level in a model mastitic system; marked differences in the protein and peptide profile of milk from LPS challenged cows were observed, and a pH 4.6-soluble fraction of this milk was found to cause a substantial induction in the secretion of IL-10 from a murine macrophage cell line. Heat-induced hydrolysis of sodium caseinate was investigated from the dual viewpoints of protein breakdown and peptide formation, and, a peptide fraction produced in this manner was found to cause a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, from a murine macrophage cell line. The effects of sodium caseinate hydrolysed by chymosin on the gut-derived satiety hormone glucagon-like peptide-1 (GLP-1) were investigated; the resulting casein-derived peptides displayed good in vitro and in vivo secretion of GLP-1. Overall, the studies described in this thesis expand on current knowledge and provide good evidence for the use of novel methods for the isolation, generation and characterisation of bioactive proteins and/or peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of fortification of skim milk powder and sodium caseinate on Cheddar cheeses was investigated. SMP fortification led to decreased moisture, increased yield, higher numbers of NSLAB and reduced proteolysis. The functional and texture properties were also affected by SMP addition and formed a harder, less meltable cheese than the control. NaCn fortification led to increased moisture, increased yield, decreased proteolysis and higher numbers of NSLAB. The functional and textural properties were affected by fortification with NaCn and formed a softer cheese that had similar or less melt than the control. Reducing the lactose:casein ratio of Mozzarella cheese by using ultrafiltration led to higher pH, lower insoluble calcium, lower lactose, galactose and lactic acid levels in the cheese. The texture and functional properties of the cheese was affected by varying the lactose:casein ratio and formed a harder cheese that had similar melt to the control later in ripening. The flavour and bake properties were also affected by decreased lactose:casein ratio; the cheeses had lower acid flavour and blister colour than the control cheese. Varying the ratio of αs1:β-casein in Cheddar cheese affected the texture and functionality of the cheese but did not affect insoluble calcium, proteolysis or pH. Increasing the ratio of αs1:β-casein led to cheese with lower meltability and higher hardness without adverse effects on flavour. Using camel chymosin in Mozzarella cheese instead of calf chymosin resulted in cheese with lower proteolysis, higher softening point, higher hardness and lower blister quantity. The texture and functional properties that determine the shelf life of Mozzarella were maintained for a longer ripening period than when using calf chymosin therefore increasing the window of functionality of Mozzarella. In summary, the results of the trials in this thesis show means of altering the texture, functional, rheology and sensory properties of Mozzarella and Cheddar cheeses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are numerous review papers discussing liquid nanoemulsions and how they compare to other emulsion systems. Little research is available on dried nanoemulsions. The objectives of this research were to (i) study the effect of varying the continuous phase of nanoemulsions with different carbohydrate/protein ratios on subsequent emulsion stability, and (ii) compare the physicochemical properties, lactose crystallisation properties, microstructure, and lipid oxidation of spray dried nanoemulsions compared to spray dried conventional emulsions having different water and sugar contents. Nanoemulsions containing sunflower oil (10% w/w), β-casein (2.5–10% w/w) and lactose or trehalose (10–17.5%) were produced following optimisation of the continuous phase by maximising and minimising viscosity and glass transition temperature (Tg’) using mixture design software. Increasing levels of β-casein from caused a significant increase in viscosity, particle size, and nanoemulsion stability, while resulting in a decrease in Tg’. Powders were made from spray drying emulsions/nanoemulsions consisting of lactose or a 70:30 mixture of lactose:sucrose (23.9%), sodium caseinate (5.1%) and sunflower oil (11.5%) in water. Nanoemulsions, produced by microfluidisation (100 MPa), had higher stability and lower viscosity than control emulsions (homogenization at 17 MPa) with lower solvent extractable free fat in the resulting powder. Partial replacement of lactose with sucrose decreased Tg and delayed Tcr. DVS and PLM showed that in powdered nanoemulsions, lactose crystallises faster than in powdered conventional emulsions. Microstructure of both powders (CLSM and cryo-SEM) showed different FGS in powders and different structure post lactose crystallisation. Powdered nanoemulsions had lower pentanal and hexanal (indicators of lipid oxidation) after 24 months storage due to their lower free fat and porosity, measured using a validated GC HS-SPME method, This research has shown the effect of altering the continuous phase of nanoemulsions on microstructure of spray dried nanoemulsions, which affects physical properties, sugar crystallisation, and lipid oxidation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objectives of this thesis were to (i) study the effect of increasing protein concentration in milk protein concentrate (MPC) powders on surface composition and sorption properties; (ii) examine the effect of increasing protein content on the rehydration properties of MPC; (iii) study the physicochemical properties of spraydried emulsion-containing powders having different water and oil contents; (iv) analyse the effect of protein type on water sorption and diffusivity properties in a protein/lactose dispersion, and; (v) characterise lactose crystallisation and emulsion stability of model infant formula containing intact or hydrolysed whey proteins. Surface composition of MPC powders (protein contents 35 - 86 g / 100 g) indicated that fat and protein were preferentially located on the surface of powders. Low protein powder (35 g / 100 g) exhibited lactose crystallisation, whereas powders with higher protein contents did not, due to their high protein: lactose ratio. Insolubility was evident in high protein MPCs and was primarily related to insolubility of the casein fraction. High temperature (50 °C) was required for dissolution of high protein MPCs (protein content > 60 g / 100 g). The effect of different oil types and spray-drying outlet temperature on the physicochemical properties of the resultant fat-filled powders was investigated and showed that increasing outlet temperature reduced water content, water activity and tapped bulk density, irrespective of oil type, and increased solvent-extractable free fat for all oil types and onset of glass transition (Tg) and crystallisation (Tcr) temperature. Powder dispersions of protein/lactose (0.21:1), containing either intact or hydrolysed whey protein (12 % degree of hydrolysis; DH), were spray-dried at pilot scale. Moisture sorption analysis at 25 °C showed that dispersions containing intact whey protein exhibited lactose crystallisation at a lower relative humidity (RH). Dispersions containing hydrolysed whey protein had significantly higher (P < 0.05) water diffusivity. Finally, a spray-dried model infant formula was produced containing hydrolysed or intact whey as the protein with sunflower oil as the fat source. Reconstituted, hydrolysed formula had a significantly (P < 0.05) higher fat globule size and lower emulsion stability than intact formula. Lactose crystallisation in powders occurred at higher RH for hydrolysed formula. In conclusion, this research has shown the effect of altering the protein type, protein composition, and oil type on the surface composition and physical properties of different dairy powders, and how these variations greatly affect their rehydration characteristics and storage stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formulated food systems are becoming more sophisticated as demand grows for the design of structural and nutritional profiles targeted at increasingly specific demographics. Milk protein is an important bio- and techno-functional component of such formulations, which include infant formula, sports supplements, clinical beverages and elderly nutrition products. This thesis outlines research into ingredients that are key to the development of these products, namely milk protein concentrate (MPC), milk protein isolate (MPI), micellar casein concentrate (MCC), β-casein concentrate (BCC) and serum protein concentrate (SPC). MPC powders ranging from 37 to 90% protein (solids basis) were studied for properties of relevance to handling and storage of powders, powder solubilisation and thermal processing of reconstituted MPCs. MPC powders with ≥80% protein were found to have very poor flowability and high compressibility; in addition, these high-protein MPCs exhibited poor wetting and dispersion characteristics during rehydration in water. Heat stability studies on unconcentrated (3.5%, 140°C) and concentrated (8.5%, 120°C) MPC suspensions, showed that suspensions prepared from high-protein MPCs coagulated much more rapidly than lower protein MPCs. β-casein ingredients were developed using membrane processing. Enrichment of β-casein from skim milk was performed at laboratory-scale using ‘cold’ microfiltration (MF) at <4°C with either 1000 kDa molecular weight cut-off or 0.1 µm pore-size membranes. At pilot-scale, a second ‘warm’ MF step at 26°C was incorporated for selective purification of micellised β-casein from whey proteins; using this approach, BCCs with β-casein purity of up to 80% (protein basis) were prepared, with the whey protein purity of the SPC co-product reaching ~90%. The BCC ingredient could prevent supersaturated solutions of calcium phosphate (CaP) from precipitating, although the amorphous CaP formed created large micelles that were less thermo-reversible than those in CaP-free systems. Another co-product of BCC manufacture, MCC powder, was shown to have superior rehydration characteristics compared to traditional MCCs. The findings presented in this thesis constitute a significant advance in the research of milk protein ingredients, in terms of optimising their preparation by membrane filtration, preventing their destabilisation during processing and facilitating their effective incorporation into nutritional formulations designed for consumers of a specific age, lifestyle or health status

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes a study of various methods to produce bioactive peptides. Initially, the generation of anti-Cronobacter spp. peptides by fermentation of milk protein is described. Lactobacillus johnsonii DPC6026 was used to generate two previously described antimicrobial peptides. Phenotypic analysis indicated unsatisfactory casein hydrolysis. The genome of the strain was sequenced and annotated. Results showed a number of unique features present, most notably a large symmetrical inversion of approximately 750kb in comparison with the human isolate L. johnsonii NCC 533. The data suggest significant genetic diversity and intra-species genomic rearrangements within the L. johnsonii spp.. Cronobacter spp. have emerged as pathogens of concern to the powdered infant formula industry. Chapters 3 and 4 of this thesis describe novel methods to generate two antimicrobial peptides, Caseicin A and B. In Chapter 3 a bank of Bacillus strains was generated and investigated for caseicin production. Following casein hydrolysis by specific B. cereus and B. thuringiensis strains the peptides of interest were generated. Chapter 4 describes a sterile enzymatic method to generate peptides from casein. Bioinformatic tools were used to predict enzymes capable of liberating caseicin peptides from casein. Hydrolysates were generated using suitable enzymes, examined and some were found to produce peptides with activity against Cronobacter spp.. This study establishes a potential industrial-grade method to generate antimicrobial peptides. Administration of GLP-1 leads to improved glycaemic control in diabetes patients. Generation of a recombinant lactic acid bacteria capable of producing a GLP-1 analogue is described in Chapter 5. In-vivo analysis confirmed insulinotropic activity. The results illustrate a method using bacteriocin producing cellular machinery to generate bioactive peptides. This thesis describes the generation of bioactive peptides by bacterial fermentation, tailored enzymatic hydrolysis and recombinant bacterial methods. The techniques described contribute to bioactive peptide research with regards novel methods of production and industrial scale-up.