2 resultados para Buried pipes

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Buried heat sources can be investigated by examining thermal infrared images and comparing these with the results of theoretical models which predict the thermal anomaly a given heat source may generate. Key factors influencing surface temperature include the geometry and temperature of the heat source, the surface meteorological environment, and the thermal conductivity and anisotropy of the rock. In general, a geothermal heat flux of greater than 2% of solar insolation is required to produce a detectable thermal anomaly in a thermal infrared image. A heat source of, for example, 2-300K greater than the average surface temperature must be a t depth shallower than 50m for the detection of the anomaly in a thermal infrared image, for typical terrestrial conditions. Atmospheric factors are of critical importance. While the mean atmospheric temperature has little significance, the convection is a dominant factor, and can act to swamp the thermal signature entirely. Given a steady state heat source that produces a detectable thermal anomaly, it is possible to loosely constrain the physical properties of the heat source and surrounding rock, using the surface thermal anomaly as a basis. The success of this technique is highly dependent on the degree to which the physical properties of the host rock are known. Important parameters include the surface thermal properties and thermal conductivity of the rock. Modelling of transient thermal situations was carried out, to assess the effect of time dependant thermal fluxes. One-dimensional finite element models can be readily and accurately applied to the investigation of diurnal heat flow, as with thermal inertia models. Diurnal thermal models of environments on Earth, the Moon and Mars were carried out using finite elements and found to be consistent with published measurements. The heat flow from an injection of hot lava into a near surface lava tube was considered. While this approach was useful for study, and long term monitoring in inhospitable areas, it was found to have little hazard warning utility, as the time taken for the thermal energy to propagate to the surface in dry rock (several months) in very long. The resolution of the thermal infrared imaging system is an important factor. Presently available satellite based systems such as Landsat (resolution of 120m) are inadequate for detailed study of geothermal anomalies. Airborne systems, such as TIMS (variable resolution of 3-6m) are much more useful for discriminating small buried heat sources. Planned improvements in the resolution of satellite based systems will broaden the potential for application of the techniques developed in this thesis. It is important to note, however, that adequate spatial resolution is a necessary but not sufficient condition for successful application of these techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem goods and services provided by estuarine and near coastal regions are being increasingly recognised for their immense value, as is the biodiversity in these areas and these near coastal communities have been identified as sentinels of climate change also. Population structure and reproductive biology of two bivalve molluscs, Cerastoderma edule and, Mytilus edulis were assessed at two study sites over a 16-month study period. Following an anomalously harsh winter, advancement of spawning time was observed in both species. Throughout Ireland and Europe the cockle has experienced mass surfacings in geographically distinct regions, and a concurrent study of cockles was undertaken to explore this phenomenon. Surfaced and buried cockles were collected on a monthly basis and their health compared. Age was highlighted as a source of variation between dying and healthy animals with a parasite threshold being reached possibly around age three. Local factors dominated when looking at the cause of surfacing at each site. The health of mussels was explored too on a temporal and seasonal basis in an attempt to assess what constitutes a healthy organism. In essence external drivers can tip the balance between “acceptable” levels of infection where the mussel can still function physiologically and “unacceptable” where prevalence and intensity of infection can result in physiological impairment at the individual and population level. Synecological studies of intertidal ecosystems are lacking, so all bivalves encountered during the sampling were assessed in terms of population structure, reproduction, and health. It became clear, that some parasites might specialize on one host species while others are not so specific in host choice. Furthermore the population genetics of the cockle, its parasite Meiogymnophallus minutus, and its hyperparasite Unikaryon legeri were examined too. A small nucleotide polymorphism was detected upon comparison of Ireland and Morocco.