7 resultados para Botterill, Jason
em CORA - Cork Open Research Archive - University College Cork - Ireland
Resumo:
My thesis presents an examination of Ce que c'est que la France toute Catholique (1686) by Pierre Bayle, a prominent figure in the Republic of Letters and the Huguenot Refuge in the seventeenth century. This pamphlet was the first occasional text that Bayle published following the Revocation of the Edict of Nantes in which the religious toleration afforded to the Huguenot minority in France was repealed, a pivotal moment in the history of early modern France. In my thesis, I analyse the specific context within which Bayle wrote this pamphlet as a means of addressing a number of issues, including the legitimacy of forced conversions, the impact of the religious controversy upon exchanges in the Republic of Letters, the nature of religious zeal and finally the alliance of Church and state discourses in the early modern period. An examination of this context provides a basis from which to re-interpret the rhetorical strategies at work within the pamphlet, and also to come to an increased understanding of how, why and to what end he wrote it. In turn this allowed me to examine the relationship between this often overlooked pamphlet and the more extensively studied Commentaire Philosophique, in which Bayle argued in favour of religious toleration. Ultimately, understanding the relationship between these two texts proves essential in order to characterise his response to the Revocation of the Edict of Nantes and to understand the place of the pamphlet within his oeuvre. Furthermore, an analysis of the pamphlet and the Commentaire Philosophique provide a lens through which to elucidate both Bayle's intellectual development at this early stage in his career, and also the wider context of the rise of toleration theory and the evolution of modes of civility within the Republic of Letters on the eve of the Enlightenment.
Resumo:
We examine the role of liquidity risk, both as a stock characteristic as well as systematic liquidity risk, in UK mutual fund performance for the first time. Using four alternative measures of stock liquidity we extract principal components across stocks in order to construct systematic or market liquidity factors. We find that on average UK mutual funds are tilted towards liquid stocks (except for small stock funds as might be expected) but that, counter-intuitively, liquidity as a stock characteristic is positively priced in the cross-section of fund performance. We find that systematic liquidity risk is positively priced in the cross-section of fund performance. Overall, our results reveal a strong role for stock liquidity level and systematic liquidity risk in fund performance evaluation models.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet, exposing challenges in coping with heterogeneous device capabilities and varying network throughput. When we couple this rise in streaming with the growing number of portable devices (smart phones, tablets, laptops) we see an ever-increasing demand for high-definition videos online while on the move. Wireless networks are inherently characterised by restricted shared bandwidth and relatively high error loss rates, thus presenting a challenge for the efficient delivery of high quality video. Additionally, mobile devices can support/demand a range of video resolutions and qualities. This demand for mobile streaming highlights the need for adaptive video streaming schemes that can adjust to available bandwidth and heterogeneity, and can provide us with graceful changes in video quality, all while respecting our viewing satisfaction. In this context the use of well-known scalable media streaming techniques, commonly known as scalable coding, is an attractive solution and the focus of this thesis. In this thesis we investigate the transmission of existing scalable video models over a lossy network and determine how the variation in viewable quality is affected by packet loss. This work focuses on leveraging the benefits of scalable media, while reducing the effects of data loss on achievable video quality. The overall approach is focused on the strategic packetisation of the underlying scalable video and how to best utilise error resiliency to maximise viewable quality. In particular, we examine the manner in which scalable video is packetised for transmission over lossy networks and propose new techniques that reduce the impact of packet loss on scalable video by selectively choosing how to packetise the data and which data to transmit. We also exploit redundancy techniques, such as error resiliency, to enhance the stream quality by ensuring a smooth play-out with fewer changes in achievable video quality. The contributions of this thesis are in the creation of new segmentation and encapsulation techniques which increase the viewable quality of existing scalable models by fragmenting and re-allocating the video sub-streams based on user requirements, available bandwidth and variations in loss rates. We offer new packetisation techniques which reduce the effects of packet loss on viewable quality by leveraging the increase in the number of frames per group of pictures (GOP) and by providing equality of data in every packet transmitted per GOP. These provide novel mechanisms for packetizing and error resiliency, as well as providing new applications for existing techniques such as Interleaving and Priority Encoded Transmission. We also introduce three new scalable coding models, which offer a balance between transmission cost and the consistency of viewable quality.
Resumo:
The thesis as a whole argues that Spinoza’s Ethics in both method and content is aimed at the normal, partly rational person. Chapter 1 is on Spinoza’s writing style, finding that rather than being arid and technical, it aims to convince the reader by means of various rhetorical techniques, so does not assume an already rational reader. The following chapters of Part 1 examine whether the Ethics’ use of the synthetic geometric method exposes it to Descartes’ critique of that method in the “Second Replies” to his Meditations, that it is not suitable for pedagogy. This involves a consideration of the role of the TIE, finding in that early text not the analytic wing of a two-part analytic-synthetic method, but rather a defence and necessitation of a stand-alone synthetic method. Part 2 of the thesis develops this study of Spinoza’s writing for the common man to consider whether he is writing about the common man. This is done by examining one of the seemingly most abstract propositions in the Ethics, 4P72, which claims that a free man will not deceive even to save his own life. The study examines who exactly is this “free man” and what is his role in the Ethics. The study looks at the examples of free men in the TTP and at the concept of the model in the Ethics, and finds that rather than the free man being an impossible ideal which we can aim at but never achieve, everyone is free to some extent, and that even normal people are at times “the free man”.
Resumo:
Video compression techniques enable adaptive media streaming over heterogeneous links to end-devices. Scalable Video Coding (SVC) and Multiple Description Coding (MDC) represent well-known techniques for video compression with distinct characteristics in terms of bandwidth efficiency and resiliency to packet loss. In this paper, we present Scalable Description Coding (SDC), a technique to compromise the tradeoff between bandwidth efficiency and error resiliency without sacrificing user-perceived quality. Additionally, we propose a scheme that combines network coding and SDC to further improve the error resiliency. SDC yields upwards of 25% bandwidth savings over MDC. Additionally, our scheme features higher quality for longer durations even at high packet loss rates.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet and mobile networks, exposes challenges in coping with heterogeneous devices and varying network throughput. Adaptive schemes, such as scalable video coding, are an attractive solution but fare badly in the presence of packet losses. Techniques that use description-based streaming models, such as multiple description coding (MDC), are more suitable for lossy networks, and can mitigate the effects of packet loss by increasing the error resilience of the encoded stream, but with an increased transmission byte cost. In this paper, we present our adaptive scalable streaming technique adaptive layer distribution (ALD). ALD is a novel scalable media delivery technique that optimises the tradeoff between streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data are spread amongst all packets, thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the resiliency of the scalable video. The Subjective testing results illustrate that our techniques and models were able to provide levels of consistent high-quality viewing, with lower transmission cost, relative to MDC, irrespective of clip type. This highlights the benefits of selective packetisation in addition to intuitive encoding and transmission.
Resumo:
Bandwidth constriction and datagram loss are prominent issues that affect the perceived quality of streaming video over lossy networks, such as wireless. The use of layered video coding seems attractive as a means to alleviate these issues, but its adoption has been held back in large part by the inherent priority assigned to the critical lower layers and the consequences for quality that result from their loss. The proposed use of forward error correction (FEC) as a solution only further burdens the bandwidth availability and can negate the perceived benefits of increased stream quality. In this paper, we propose Adaptive Layer Distribution (ALD) as a novel scalable media delivery technique that optimises the tradeoff between the streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data is spread amongst all datagrams thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the scalable video, while providing increased resilience to the highest quality layers. Our experimental results show that ALD improves the perceived quality and also reduces the bandwidth demand by up to 36% in comparison to the well-known Multiple Description Coding (MDC) technique.