4 resultados para Blood Residues

em CORA - Cork Open Research Archive - University College Cork - Ireland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute myeloid leukaemia refers to cancer of the blood and bone marrow characterised by the rapid expansion of immature blasts of the myeloid lineage. The aberrant proliferation of these blasts interferes with normal haematopoiesis, resulting in symptoms such as anaemia, poor coagulation and infections. The molecular mechanisms underpinning acute myeloid leukaemia are multi-faceted and complex, with a range of diverse genetic and cytogenetic abnormalities giving rise to the acute myeloid leukaemia phenotype. Amongst the most common causative factors are mutations of the FLT3 gene, which codes for a growth factor receptor tyrosine kinase required by developing haematopoietic cells. Disruptions to this gene can result in constitutively active FLT3, driving the de-regulated proliferation of undifferentiated precursor blasts. FLT3-targeted drugs provide the opportunity to inhibit this oncogenic receptor, but over time can give rise to resistance within the blast population. The identification of targetable components of the FLT3 signalling pathway may allow for combination therapies to be used to impede the emergence of resistance. However, the intracellular signal transduction pathway of FLT3 is relatively obscure. The objective of this study is to further elucidate this pathway, with particular focus on the redox signalling element which is thought to be involved. Signalling via reactive oxygen species is becoming increasingly recognised as a crucial aspect of physiological and pathological processes within the cell. The first part of this study examined the effects of NADPH oxidase-derived reactive oxygen species on the tyrosine phosphorylation levels of acute myeloid leukaemia cell lines. Using two-dimensional phosphotyrosine immunoblotting, a range of proteins were identified as undergoing tyrosine phosphorylation in response to NADPH oxidase activity. Ezrin, a cytoskeletal regulatory protein and substrate of Src kinase, was selected for further study. The next part of this study established that NADPH oxidase is subject to regulation by FLT3. Both wild type and oncogenic FLT3 signalling were shown to affect the expression of a key NADPH oxidase subunit, p22phox, and FLT3 was also demonstrated to drive intracellular reactive oxygen species production. The NADPH oxidase target protein, Ezrin, undergoes phosphorylation on two tyrosine residues downstream of FLT3 signalling, an effect which was shown to be p22phox-dependent and which was attributed to the redox regulation of Src. The cytoskeletal associations of Ezrin and its established role in metastasis prompted the investigation of the effects of FLT3 and NADPH oxidase activity on the migration of acute myeloid leukaemia cell lines. It was found that inhibition of either FLT3 or NADPH oxidase negatively impacted on the motility of acute myeloid leukaemia cells. The final part of this study focused on the relationship between FLT3 signalling and phosphatase activity. It was determined, using phosphatase expression profiling and real-time PCR, that several phosphatases are subject to regulation at the levels of transcription and post-translational modification downstream of oncogenic FLT3 activity. In summary, this study demonstrates that FLT3 signal transduction utilises a NADPH oxidase-dependent redox element, which affects Src kinase, and modulates leukaemic cell migration through Ezrin. Furthermore, the expression and activity of several phosphatases is tightly linked to FLT3 signalling. This work reveals novel components of the FLT3 signalling cascade and indicates a range of potential therapeutic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depression is among the leading causes of disability worldwide. Currently available antidepressant drugs have unsatisfactory efficacy, with up to 60% of depressed patients failing to respond adequately to treatment. Emerging evidence has highlighted a potential role for the efflux transporter P-glycoprotein (P-gp), expressed at the blood-brain barrier (BBB), in the aetiology of treatment-resistant depression. In this thesis, the potential of P-gp inhibition as a strategy to enhance the brain distribution and pharmacodynamic effects of antidepressant drugs was investigated. Pharmacokinetic studies demonstrated that administration of the P-gp inhibitors verapamil or cyclosporin A (CsA) enhanced the BBB transport of the antidepressants imipramine and escitalopram in vivo. Furthermore, both imipramine and escitalopram were identified as transported substrates of human P-gp in vitro. Contrastingly, human P-gp exerted no effect on the transport of four other antidepressants (amitriptyline, duloxetine, fluoxetine and mirtazapine) in vitro. Pharmacodynamic studies revealed that pre-treatment with verapamil augmented the behavioural effects of escitalopram in the tail suspension test (TST) of antidepressant-like activity in mice. Moreover, pre-treatment with CsA exacerbated the behavioural manifestation of an escitalopram-induced mouse model of serotonin syndrome, a serious adverse reaction associated with serotonergic drugs. This finding highlights the potential for unwanted side-effects which may occur due to increasing brain levels of antidepressants by P-gp inhibition, although further studies are needed to fully elucidate the mechanism(s) at play. Taken together, the research outlined in this thesis indicates that P-gp may restrict brain concentrations of escitalopram and imipramine in patients. Moreover, we show that increasing the brain distribution of an antidepressant by P-gp inhibition can result in an augmentation of antidepressant-like activity in vivo. These findings raise the possibility that P-gp inhibition may represent a potentially beneficial strategy to augment antidepressant treatment in clinical practice. Further studies are now warranted to evaluate the safety and efficacy of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anaerobic digestion (AD) of biodegradable waste is an environmentally and economically sustainable solution which incorporates waste treatment and energy recovery. The organic fraction of municipal solid waste (OFMSW), which comprises mostly of food waste, is highly degradable under anaerobic conditions. Biogas produced from OFMSW, when upgraded to biomethane, is recognised as one of the most sustainable renewable biofuels and can also be one of the cheapest sources of biomethane if a gate fee is associated with the substrate. OFMSW is a complex and heterogeneous material which may have widely different characteristics depending on the source of origin and collection system used. The research presented in this thesis investigates the potential energy resource from a wide range of organic waste streams through field and laboratory research on real world samples. OFMSW samples collected from a range of sources generated methane yields ranging from 75 to 160 m3 per tonne. Higher methane yields are associated with source segregated food waste from commercial catering premises as opposed to domestic sources. The inclusion of garden waste reduces the specific methane yield from household organic waste. In continuous AD trials it was found that a conventional continuously stirred tank reactor (CSTR) gave the highest specific methane yields at a moderate organic loading rate of 2 kg volatile solids (VS) m-3 digester day-1 and a hydraulic retention time of 30 days. The average specific methane yield obtained at this loading rate in continuous digestion was 560 ± 29 L CH4 kg-1 VS which exceeded the biomethane potential test result by 5%. The low carbon to nitrogen ratio (C: N <14:1) associated with canteen food waste lead to increasing concentrations of volatile fatty acids in line with high concentrations of ammonia nitrogen at higher organic loading rates. At an organic loading rate of 4 kg VS m-3day-1 the specific methane yield dropped considerably (381 L CH4 kg-1 VS), the pH rose to 8.1 and free ammonia (NH3 ) concentrations reached toxicity levels towards the end of the trial (ca. 950 mg L-1). A novel two phase AD reactor configuration consisting of a series of sequentially fed leach bed reactors connected to an upflow anaerobic sludge blanket (UASB) demonstrated a high rate of organic matter decay but resulted in lower specific methane yields (384 L CH4 kg-1 VS) than the conventional CSTR system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of biological effect monitoring for the detection of environmental chemical exposure in domestic animals is still in its infancy. This study investigated blood sample preparations in vitro for their use in biological effect monitoring. When peripheral blood mononuclear cells (PBMCs), isolated following the collection of multiple blood samples from sheep in the field, were cryopreserved and subsequently cultured for 24 hours a reduction in cell viability (<80%) was attributed to delays in the processing following collection. Alternative blood sample preparations using rat and sheep blood demonstrated that 3 to 5 hour incubations can be undertaken without significant alterations in the viability of the lymphocytes; however, a substantial reduction in viability was observed after 24 hours in frozen blood. Detectable levels of early and late apoptosis as well as increased levels of ROS were detectable in frozen sheep blood samples. The addition of ascorbic acid partly reversed this effect and reduced the loss in cell viability. The response of the rat and sheep blood sample preparations to genotoxic compounds ex vivo showed that EMS caused comparable dose-dependent genotoxic effects in all sample preparations (fresh and frozen) as detected by the Comet assay. In contrast, the effects of CdCl2 were dependent on the duration of exposure as well as the sample preparation. The analysis of leukocyte subsets in frozen sheep blood showed no alterations in the percentages of T and B lymphocytes but led to a major decrease in the percentage of granulocytes compared to those in the fresh samples. The percentages of IFN-γ and IL-4 but not IL-6 positive cells were comparable between fresh and frozen sheep blood after 4 hour stimulation with phorbol 12-myrisate 13-acetate and ionomycin (PMA+I). These results show that frozen blood gives comparable responses to fresh blood samples in the toxicological and immune assays used.